Proposition d’une stratégie de segmentation d’images hyperspectrales

Show full item record

Files in this item

PDF 05•Goretta(coul)(2008005).pdf 2.365Mb

Pour citer ce document :
URI: http://hdl.handle.net/2042/28813
Title: Proposition d’une stratégie de segmentation d’images hyperspectrales
Author: GORETTA, Nathalie; ROGER, Jean-Michel; CHRISTOPHE, Florio; BELLON-MAUREL, Véronique; RABATEL, Gilles; LELONG, Camille
Abstract: Cet article présente une stratégie de segmentation d’images hyperspectrales liant de façon symétrique et conjointe les aspects spectraux et spatiaux. Pour cela, nous proposons de construire des variables latentes permettant de définir un sous-espace représentant au mieux la topologie de l’image. Dans cet article, nous limiterons cette notion de topologie à la seule appartenance aux régions. Pour ce faire, nous utilisons d’une part les notions de l’analyse discriminante (variance intra, inter) et les propriétés des algorithmes de segmentation en région liées à celles-ci. Le principe générique théorique est exposé puis décliné sous la forme d’un exemple d’implémentation optimisé utilisant un algorithme de segmentation en région type split and merge. Les résultats obtenus sur une image de synthèse puis réelle sont exposés et commentés.
Description: Hyper-Spectral Imaging (HIS) also known as chemical or spectroscopic imaging is an emerging technique that combines imaging and spectroscopy to capture both spectral and spatial information from an object. Hyperspectral images are made up of contiguous wavebands in a given spectral band. These images provide information on the chemical make-up profile of objects, thus allowing the differentiation of objects of the same colour but which possess make-up profile. Yet, whatever the application field, most of the methods devoted to HIS processing conduct data analysis without taking into account spatial information.Pixels are processed individually, as an array of spectral data without any spatial structure. Standard classification approaches are thus widely used (k-means, fuzzy-c-means hierarchical classification...). Linear modelling methods such as Partial Least Square analysis (PLS) or non linear approaches like support vector machine (SVM) are also used at different scales (remote sensing or laboratory applications). However, with the development of high resolution sensors, coupled exploitation of spectral and spatial information to process complex images, would appear to be a very relevant approach. However, few methods are proposed in the litterature. The most recent approaches can be broadly classified in two main categories. The first ones are related to a direct extension of individual pixel classification methods using just the spectral dimension (k-means, fuzzy-c-means or FCM, Support Vector Machine or SVM). Spatial dimension is integrated as an additionnal classification parameter (Markov fields with local homogeneity constrainst [5], Support Vector Machine or SVM with spectral and spatial kernels combination [2], geometrically guided fuzzy C-means [3]...). The second ones combine the two fields related to each dimension (spectral and spatial), namely chemometric and image analysis. Various strategies have been attempted. The first one is to rely on chemometrics methods (Principal Component Analysis or PCA, Independant Component Analysis or ICA, Curvilinear Component Analysis...) to reduce the spectral dimension and then to apply standard images processing technics on the resulting score images i.e. data projection on a subspace. Another approach is to extend the definition of basic image processing operators to this new dimensionality (morphological operators for example [1, 4]). However, the approaches mentioned above tend to favour only one description either directly or indirectly (spectral or spatial). The purpose of this paper is to propose a hyperspectral processing approach that strikes a better balance in the treatment of both kinds of information....
Subject: Imagerie hyperspectrale; segmentation d’images; chimiométrie; Hyperspectral imaging; segmentation; chemometric
Publisher: GRETSI, Saint Martin d'Hères, France
Date: 2009

This item appears in the following Collection(s)

Show full item record





Advanced Search