2 - Reconnaissance d'objets volumiques par mise en correspondance d'indices visuels

Show full item record

Files in this item

PDF Jurie (2000039).pdf 2.564Mb

Pour citer ce document :
URI: http://hdl.handle.net/2042/2187
Title: 2 - Reconnaissance d'objets volumiques par mise en correspondance d'indices visuels
Author: JURIE (Frédéric)
Abstract: Nous nous intéressons à la reconnaissance d'objets volumiques par mise en correspondance d'indices visuels. Nous supposons que les objets à reconnaître sont représentés à l'aide de modèles tridimensionnels, composés d'indices visuels. Reconnaître un objet signifie, dans ce cas, mettre en correspondance les indices du modèle de cet objet avec des indices extraits de l'image, de manière à ce que ces derniers puissent s'expliquer comme une transformation géométrique des indices du modèle. La recherche de la pose (valeur des paramètres de la transformation alignant le modèle sur l'image) et la recherche des correspondances sont ici traitées simultanément. Cela constitue l'originalité et la force de la méthode que nous proposons. Nous présentons de nombreux résultats expérimentaux illustrant l'utilisation de notre approche pour la reconnaissance d'objets.
Description: The use of hypothesis verification is recurrent in the model-based recognition literature. Verification consists in measuring how many model features transformed by a pose coincide with some image features. When data involved in the computation of the pose are noisy, the pose is inaccurate and difficult to verify, especially when the objects are partially occluded. To address this problem, the noise in image features is modeled by a Gaussian distribution. A probabilistic framework allows the evaluation of the probability of a matching, knowing that the pose belongs to a rectangular volume of the pose space. It involves quadratic programming, if the transformation is affine. This matching probability is used in an algorithm computing the best pose. It consists in a recursive multi resolution exploration of the pose space, discarding outliers in the match data while the search is progressing. Numerous experimental results are described. They consist of 2D and 3D recognition experiments using the proposed algorithm.
Subject: Reconnaissance forme; Reconnaissance objet; Concordance forme; Forme tridimensionnelle; Vérification; Approche probabiliste
Publisher: GRETSI, Saint Martin d'Hères, France
Date: 2001

This item appears in the following Collection(s)

Show full item record





Advanced Search