1 - Champs aléatoires de Pickard et modélisation d'images digitales

Show full item record

Files in this item

PDF 001.PDF TEXTE.pdf 2.153Mb

Pour citer ce document :
URI: http://hdl.handle.net/2042/1675
Title: 1 - Champs aléatoires de Pickard et modélisation d'images digitales
Author: DEVIJVER (P. A.); DEKESEL (M.)
Abstract: Dans cet article, nous développons un modèle d'image qui fait appel aux champs aléatoires markoviens de Pickard dans le but de modéliser des notions contextuelles aussi vagues et imprécises que « l'uniformité d'une région » ou « la continuité du bord d'un objet ». Nous décrivons une méthode d'estimation par maximum de vraisemblance a posteriori obtenue par une généralisation simple d'une méthode largement utilisée dans le contexte unidimensionel de la reconnaissance de la parole . Nous développons deux méthodes d'estimation non supervisée des paramètres du modèle et nous montrons au moyen de plusieurs exemples que notre technique permet de traiter avec succès des problèmes de restauration et de segmentation d'images digitales à niveaux de gris .Dans cet article, nous développons un modèle d'image qui fait appel aux champs aléatoires markoviens de Pickard dans le but de modéliser des notions contextuelles aussi vagues et imprécises que « l'uniformité d'une région » ou « la continuité du bord d'un objet ». Nous décrivons une méthode d'estimation par maximum de vraisemblance a posteriori obtenue par une généralisation simple d'une méthode largement utilisée dans le contexte unidimensionel de la reconnaissance de la parole . Nous développons deux méthodes d'estimation non supervisée des paramètres du modèle et nous montrons au moyen de plusieurs exemples que notre technique permet de traiter avec succès des problèmes de restauration et de segmentation d'images digitales à niveaux de gris .
Description: This paper outlines a modeling technique for digital images which relies on Markov random fields proposed by Pickard for the purpose of representing fuzzy contextual concepts such as "the uniformity of a region" or "the continuity of a contour" . We develop a maximum likelihood estimation technique which is a straightforward generalization of an approach which is used quite extensively in speech recognition circles . Next, we outline two nonsupervised parameter estimation techniques which enable us to infer the model parameters front actual imagery data. We offer a number of practical examples providing evidence that our approach is well suited to handle problems of image restauration and/or segmentation .
Subject: Traitement image; Segmentation; Modèle Markov; Restauration image
Publisher: GRETSI, Saint Martin d'Hères, France
Date: 1988

This item appears in the following Collection(s)

Show full item record





Advanced Search