4 - Caractérisation des polynômes de Hurwitz et de Schur complexes

Show full item record

Files in this item

PDF 004.PDF TEXTE.pdf 633.7Kb

Pour citer ce document :
URI: http://hdl.handle.net/2042/1662
Title: 4 - Caractérisation des polynômes de Hurwitz et de Schur complexes
Author: BENIDIR (M.)
Abstract: Un algorithme de calcul pour tester les polynômes à coefficients réels ou complexes admettant toutes leurs racines dans un demi-plan est établi. Une démonstration complète du critère de Routh pour tester la stabilité des filtres linéaires est proposée
Description: Polynomials having only roots with négative real parts and those having only roots inside the unit circle can be characterized in many ways. The criterias introducing a pair of other polynomials with roots alternating on the imaginary axis or on the unit circle are extended to the complex case . An algorithm is established for testing polynomials with real or complex coefficients having all of their roots in a given half-plane, or in a sector defined by two straight fines passing through the origin . A complete proof of the Routh's criterion for testing the continuous-time linear system stability is proposed in both the real and complex cases.
Subject: Filtrage; Filtre linéaire; Critère; Stabilité; Polynôme Hurwitz; Algorithme; Essai; Critère Routh
Publisher: GRETSI, Saint Martin d'Hères, France
Date: 1988

This item appears in the following Collection(s)

Show full item record





Advanced Search