2 - Equations intégrales pour les problèmes à symétrie de révolution

Show full item record

Files in this item

PDF 002.PDF TEXTE.pdf 981.2Kb

Pour citer ce document :
URI: http://hdl.handle.net/2042/1623
Title: 2 - Equations intégrales pour les problèmes à symétrie de révolution
Author: BERTHON (A.)
Abstract: Diffusion des ondes acoustiques et électromagnétiques par des corps de révolution
Description: Wave scattering by obstacles leads to systems of integral equations for unknown fonctions defined on a surface . We show that axisymmetric problems may be reduced to integral equations for unknown functions of a single variable, with a computational gain. The singular kernels relevant to the integral operators of acoustics and electromagnetism are written explicitly and their properties studied ; methods are provided for their efficient computation . As an example we take a conical corrugated horn and determine, via a calculation of the superficial currents, its radiation patterns and standing wave ratio.
Subject: Diffusion onde; Onde acoustique; Onde électromagnétique; Corps révolution; Equation intégrale
Publisher: GRETSI, Saint Martin d'Hères, France
Date: 1987

This item appears in the following Collection(s)

Show full item record





Advanced Search