Propriétés de la réflexion acoustique

des lames courbes

**

J. de Lustrac
R. Carbo Fite

Centre d'Etude des Phénomènes Aléatoires (CEPHAG)
(associé au C.N.R.S)

Resume.

Après avoir rappelé très brièvement le régime transitoire de la réflexion des ondes acoustiques sur une lame plane, nous nous proposons d'analyser les modifications apportées à cette théorie par une courbure de la lame. Nous appliquerons ces résultats à la détermination des échos des cylindres creux remplis d'air. La concordance avec les résultats expérimentaux semble satisfaisante.

Abstract.

At first, the transient state of the reflection of acoustical waves on a plane plate is recalled shortly. Thereafter, we try to analyse the alterations of this theory through a curvature of the plate. We then apply the results to the determination of the echoes from a hollow air filled cylinder. The concordance with the experimental results seems satisfactory.

(*) 46, av. Félix Viallet – 38, GRENOBLE
1. INTRODUCTION.

Nous nous placerons dans un domaine de fréquences tel, que la longueur d'onde (λ) soit très petite devant les dimensions et le rayon de courbure de la lame.

Dans ces conditions, l'onde réfléchie dans la direction de l'émission est presque exclusivement produite par une surface avoisinant le point où la normale est dans la direction de propagation. Cette partie de la lame, qui réfléchit dans la direction de l'émission, se comporte comme une surface plane formée par la partie du plan tangent dont la distance à la surface courbe est très petite devant λ. Il est nécessaire que la partie assimilable à un plan ait des dimensions grandes devant λ, ce qui impose que le rayon de courbure soit très grand devant λ.

Il faut remarquer qu'il s'agit d'une approximation dans laquelle nous ne tenons pas compte de l'existence d'ondes transversales dans la lame, dues à la conversion de mode de propagation de l'incidence oblique dans la zone de la lame courbe où la normale n'est pas dans la direction d'incidence.

Cette approximation a l'intérêt d'aboutir à des résultats assez simples et d'interprétation facile. La théorie générale, [3 à 6] au contraire, prenant comme départ l'équation d'onde et imposant les conditions de continuité aux dioptres courbes respectifs, entraîne une grande complexité pour l'interprétation a posteriori des résultats expérimentaux.
2. Réflexion sur une lame épaisse.

Le régime transitoire de la réflexion des ondes acoustiques sur une lame plane épaisse est déterminé par la suite des interférences des ondes réfléchies sur les deux faces de la lame [1] [2].

Soit une lame (figure 1) avec
- \(r_1 \) le facteur de réflexion du dioptre (1,2)
- \(r_2 \) celui du dioptre (2,3), et \(\tau \) le retard \(\frac{d}{c_2} \)

où \(P(t) \) est la pression incidente,

\(P_R(t) \) la pression réfléchie à l'instant \(t \) vaut :

\[
(1) \quad P_R(t) = r_1 P(t) + (1-r_1^2) \sum_{n=1}^{\infty} (-r_1^2)^n P(t-2n\tau)
\]

où, si \(P(t) = \delta(t) \) (percussion)

\(P_R(t) = \mathcal{R}(t) \) (réponse percussionnelle de réflexion)

\[\begin{array}{c}
0 \quad 1 \quad 2 \\
\hline
P(t) \quad P_2 \\
P_R(t) \quad P_2
\end{array}\]

Figure 1
(2) \[
R_s(t) = r_1 \delta(t) + (1-r_1^2) \sum_{n=1}^{\frac{E_{st}}{2\pi}} (-r_1)^{n-1} \cdot r_2^n \delta(t-2\pi n)
\]

- La réponse à une sinusoïde en régime permanent est donnée pour le gain complexe de réflexion (figure 2)

![Diagram](image)

Figure 2 Z₁, Z₂, Z₃ impédance des milieux 1, 2, 3

Les minimums se produisent pour \[\omega \tau = h \pi\] , soit

(3) \[
d = h \frac{\lambda_2}{2}
\]

3. **REFLEXION PAR UNE LAME COURBE [7].**

3.1. On considère deux milieux acoustiques différents limités par une surface courbe de rayon de courbure constant \(R \) , et de centre \(O \) . Dans le milieu 1 se propage une onde plane de longueur d'onde \(\lambda_1 \) et
de célérité C_1 (figure 3). Après réflexion sur la surface courbe, on n'est plus en présence d'une onde plane. En effet, soit une portion du plan de l'onde incidente de largeur $2\gamma_0$; elle constitue un pinceau incident d'ouverture nulle (onde plane).

Ce pinceau est réfléchi avec une ouverture $4\,\hat{f}$. L'énergie réfléchie est supposée également partagée dans tout l'angle d'ouverture $4\,\hat{f}$ et de sommet A, centre optique du système $(OA = \frac{R}{2})$ (figure 3).

Quand le récepteur, ainsi que la source sonore, se trouvent sur l'axe x et du même côté de la courbure, à une distance $L+R$ du centre de courbure O, l'énergie de l'onde réfléchie dans une bande centrée de largeur $2a$ ($2a = \text{côté ou diamètre de l'hydrophone récepteur}$) est transformée en énergie électrique à la réception.

En conséquence, sous l'hypothèse que la longueur d'onde soit très petite devant le rayon de courbure R et a très petit devant L ($a \ll L; \lambda \ll R$), l'énergie de l'onde réfléchie transformée en énergie électrique à la réception provient de celle d'un pinceau d'onde incidente, de largeur $2\gamma_0$, telle que :

$$y_0 = R \sin \hat{f}$$
\(y_0 = R \tan \theta \)

La pression sur le récepteur vaut alors :

- pour le cas d'une surface cylindrique

\[
P_o = \frac{P \cdot E \cdot y_0}{4 \cdot f \cdot (L + R/2)} \quad \text{et} \quad L \gg R/2
\]

(6) \[P_o(t) = P(t) \cdot r_1 \cdot K_c \quad K_c = \frac{y_0}{4 \cdot f \cdot L} \]

- pour le cas d'une surface sphérique

(7) \[P_o(t) = P(t) \cdot r_1 \cdot K_s \quad K_s = \frac{1}{4 \cdot f} \cdot \left(\frac{y_0}{L}\right)^2 \]
3.2 Réflexion par une lame courbe.

Soit une lame courbe à faces équidistantes d'épaisseur \(d \), séparant deux milieux d'impédance \(Z_1 \) et \(Z_3 \). Les rayons de courbure sont (figure 4)

\[
R_e = \text{rayon extérieur}
\]
\[
R_i = \text{rayon intérieur}
\]

![Figure 4](image)

Si l'ouverture du pinceau sortant après un temps de transit \(2n\tau \), est \(2\theta n \) après avoir subi :

- une transmission 1-2 (entrée)
- \(n \) réflexions 2-3 (\(r_2 : \) face arrière)
- \((n-1) \) réflexions 2-1 (\(-r_1 : \) face avant)
- une transmission 2-1 (sortie)
- d'après les considérations de réflexion et l'approximation des petits angles on obtient

\[
\frac{\sin \alpha}{\sin \gamma} = \frac{c_2}{c_1} \quad \text{ou} \quad \alpha \approx \frac{c_2}{c_1} \gamma
\]

(9) \[\theta_n = 2(\gamma + n\gamma) \quad \text{avec} \quad \gamma \approx \alpha \frac{d}{R_i} \]

(10) \[\theta_n \approx 2\gamma(1+nb) \quad \text{avec} \quad b = \frac{c_2}{c_4} \frac{d}{R_i} \]

(ne dépendant que du corps réfléchissant)

En généralisant les formules (6) et (7) à la pression \(P' \) réémise par la paroi, cylindrique ou sphérique, au temps \(t = 2n \tau \) sous une ouverture \(2\theta_n \) on obtient :

(11) \[P'_n = P \cdot \frac{K_n}{2\theta_n} \cdot \frac{V_n}{L} \quad \text{(cylindrique)} \]

ou

(12) \[P'_n = P \cdot \frac{K_n}{2\theta_n} \cdot \left(\frac{V_n}{L}\right)^2 \quad \text{(sphérique)} \]

où \(K_n \) vaut (compte tenu de (8))

(13) \[K_n = (1 - r_1^2)(-r_2)^{n-1} (r_2)^n \]

compte tenu de (6), (7) et (10)

\[P'_n = \frac{K_n}{1+b_n} P_o \]

(14) \[P'_n(t) = \frac{K_n}{1+b_n} P_o(t-2n) \]
et

\[P_n(t) = \sum_{n=0}^{\text{Ent } \frac{t}{2\pi}} P_n'(t) \]

\[P_n(t) = r_1 P(t) + (1-r_1^2) \sum_{n=1}^{\text{Ent } \frac{t}{2\pi}} (-r_1)^{n-1} r_2^n P(t-2n\pi) \]

d'où la réponse percussielle de réflexion \(\mathcal{R}(t) \)
en faisant dans (7) \(P(t) \equiv \delta(t) \)

\[\mathcal{R}(t) = K_s \left[r_1 \delta(t) + (1-r_1^2) \sum_{n=1}^{\text{Ent } \frac{t}{2\pi}} (-r_1)^{n-1} \frac{r_2^n}{1+bn} \delta(t-2n\pi) \right] \]

que l'on peut comparer avec (2)

\[\mathcal{R}(t) = r_1 \delta(t) + (1-r_1^2) \sum_{n=1}^{\text{Ent } \frac{t}{2\pi}} (-r_1)^{n-1} r_2^n \delta(t-2n\pi) \]

Il en découle les remarques suivantes :

1°/ Il existe dans (16) un coefficient \(K_s \) ou \(K_c \)
qui tient compte du fait que les ondes de retour
sont sphériques ou cylindriques.

2°/ Les termes de la série ayant un dénominateur
\((1 + bn) \), l'expression (16) converge plus vite que
(2). Alors le régime transitoire converge plus vite,
vers le régime permanent, dans le cas de lames courbes.
que dans celui de lames planes.

3.3 Régime permanent de la réflexion par une lame courbe.

Le gain complexe (régime permanent) peut être obtenu par transformation de FOURIER de la réponse percussionnelle, [7] ou par un raisonnement analogue à celui de l'établissement du régime transitoire [2].

On trouve :

\[R = K \sum_{n \neq 1}^{\infty} \frac{(r_2)^n}{1 + bn} e^{i\omega 2n\tau} \]

- si \(r_2 < 0 \) (z_2 > z_3) (cas général en acoustique sous-marine)

\(R_{\text{maximum}} \) pour :

\[e^{i\omega 2n\tau} = \begin{cases}
-1 & \text{pour } n \text{ impair} \\
1 & \text{pour } n \text{ pair}
\end{cases} \]

soit pour : \(d = (2h+1) \frac{\lambda}{4} \)

\(R_{\text{minimum}} \) pour :

\[e^{i\omega 2n\tau} = \begin{cases}
1 & \text{pour } n \text{ impair} \\
-1 & \text{pour } n \text{ pair}
\end{cases} \]

soit pour : \(d = h \frac{\lambda}{2} \)

* La position des maximums et des minimums de \(R(\omega) \) pour une lame courbe est la même que pour une lame plane correspondante (cf. 2).

611
* Le coefficient de réflexion minimum vaut alors :

\[R_{\text{min}} = K \left[r_1 - (1-r_1^2) \sum_{n=1}^{\infty} \frac{r_1^{2n-1}}{1+bn} \right] \]

Nous considérons deux cas particulièrement importants en acoustique sous-marine :

1 - Lame courbe métallique immergée : le milieu extérieur (1 ou 3) est l'eau.
On a alors \(r_1 = -r_2 = r \) (\(r \) : eau, métal)
Nous présentons (figure 5) la comparaison de \(R(\omega) \) pour une lame plane et courbe

\[R_{\text{min}} = K \left[r - (1-r^2) \sum_{n=1}^{\infty} \frac{r^{2n-1}}{1+bn} \right] \]

et la variation de \(R_{\text{min}}(R/d) \) est présentée figure 6 avec \(R_{\text{min}} \) tendant vers 0 pour \(R/d \) très grand, ce qui correspond au cas plan.

2 - Lame courbe métallique séparant eau et air :
On a alors \(r_2 = -1 \).
La figure 7 montre la variation de \(|R(\omega)| \)

\[R_{\text{min}} = K \left[r - (1-r^2) \sum_{n=1}^{\infty} \frac{r^{n-1}}{1+bn} \right] \]

dont l'évolution avec \(R/d \) est présentée figure 8 ;
où R_{Min} tend asymptotiquement vers -1, ce qui correspond au cas de la lame plane séparant eau et air.

* On note, sur les figures 6 et 8, que les résultats expérimentaux sont au dessous des valeurs théoriques. Ceci montrerait que le comportement de la lame courbe tendrait plus rapidement vers celui de la lame plane que cette théorie le laissait prévoir. En fait, les données acoustiques, caractéristiques des matériaux utilisés ne nous sont pas connues avec une précision suffisante pour permettre de conclure à ce sujet.

4. CONCLUSION: APPLICATION A LA REFLEXION DES CYLINDRES CREUX.

Sous les hypothèses faites précédemment, en ce qui concerne la longueur d'onde, le cylindre peut être considéré approximativement comme deux lames courbes (ou, à la limite planes [8]) séparées par le milieu intérieur (de même pour les sphères).

Nous pouvons distinguer deux cas de comportement très différents suivant que le milieu intérieur au cylindre permet la transmission d'énergie acoustique de la paroi (cas de l'eau) ou non (cas de l'air).

1°/ Si le milieu intérieur transmet une partie de l'énergie de la paroi, le régime transitoire de la réflexion sur une lame courbe ne permet de calculer la forme que pour le premier écho du à la face avant du cylindre (s'il est distinct) dont on présente quelques cas expérimentaux figure 9.
2°/ Si le milieu intérieur ne transmet pas d'énergie acoustique de la paroi (cas de l'air), l'écho du cylindre est seulement formé de l'écho de la paroi avant qui est courbe (si l'effet des ondes de surface, transitant dans la paroi, est négligeable ou suffisamment retardé pour que les deux échos soient distincts).

Dans ce cas, l'écho du cylindre peut être déterminé par le régime transitoire de la réflexion par une lame courbe. Quelques échos caractérisant l'évolution du Minimum de la réflexion sont présentés figure 10.
BIBLIOGRAPHIE

1 RAYLEIGH J.W. - Theory of Sound

2 de LUSTRAC J. - Régime transitoire de la réflexion
des ondes acoustiques sur une lame épaisse.
Ann. Télécomm., tome 23, N° 3-4, Mars-Avril 1968,
p. 87.

3 HICKLING R & DIERCKS J. - Echoes from hollow alu-
minium spheres in water

4 HAMPTON & MCKINNEY - Experimental study of the
scattering of acoustic energy from solid metallic
spheres in water.

5 HORTON, KING & DIERCKS - Theoretical analysis of
the scattering of short acoustic pulses by a thin-
walled metallic cylinder in water.

6 DOOLITTLE, UNERALL & UGINICUS - Sound scattering
by elastic cylinders - J.A.S.A., Vol. 43, N° 1,

7 R. CARBO FITE - Phénomènes d'interférences liés à
la formation des échos.
Thèse de Docteur de 3ème cycle, Faculté des
Sciences de Grenoble, 1969.

8 de LUSTRAC J. & CARBO FITE R. - Réponse percussion-
nelle des sphères et cylindres creux immergés.
Figure 5: Module du gain complexe de la réflexion par une lame courbe en aluminium immergée dans l'eau $R_e = 6$ cm, $d = 0.9$ cm.

$R_{\text{min}} = K \left[r - (1 - r^2) \sum_{n=1}^{\infty} \frac{n^{2n-1}}{1+b^n} \right]$

Figure 6: Evolution du minimum du coefficient de réflexion d'une lame courbe immergée dans l'eau, en fonction du rapport R_e / d.

616
Figure 7 : Module du gain complexe de la réflexion par une lame courbe en aluminium, séparant l'eau et l'air $R_e = 6 \text{ cm}$, $d=0.9 \text{ cm}$

Figure 8 : Evolution du minimum du coefficient de réflexion d'une lame courbe séparant l'eau et l'air, en fonction du rapport R_e/d.
Echo d'une lame courbe en duralumin immergée dans l'eau (premier écho d'un cylindre creux rempli d'eau)

Figure 9-1
\[R_e = 62 \text{ mm} \quad R_i = 44 \text{ mm} \]
Durée impulsion : 60 s
Echelle : 10 s/div.

Figure 9-2
\[R_e = 62 \text{ mm} \quad R_i = 54 \text{ mm} \]
Durée impulsion : 60 s
Echelle : 10 s/div.

Figure 9-3
\[R_e = 163 \text{ mm} \quad R_i = 158 \text{ mm} \]
Durée impulsion : 60 s
Echelle : 10 s/div.

Figure 9-4
Lame plane
Épaisseur : 4 mm
Durée impulsion : 60 s
Echelle : 10 s/div.
Echo d'un cylindre creux, en duralumin, rempli d'eau

Figure 9-5
- $R_e = 62$ mm
- $R_i = 38$ mm
- Durée impulsion : 60 s
- Échelle : 50 s/div.

Figure 9-6
- $R_e = 62$ mm
- $R_i = 55.7$ mm
- Durée impulsion : 60 s
- Échelle : 50 s/div.

Figure 9-7
- $R_e = 80$ mm
- $R_i = 75$ mm
- Durée impulsion : 60 s
- Échelle : 50 s/div.

Figure 9-8
- $R_e = 119$ mm
- $R_i = 116$ mm
- Durée impulsion : 60 s
- Échelle : 50 s/div.
Echo d'une lame courbe en duralumin séparant eau et air (cylindre rempli d'air) pour un minimum de réflexion.

Figure 10-1

\[R_e = 62 \text{ mm} \quad R_i = 44 \text{ mm} \]

Durée impulsion : 60 s

Echelle : 10 s/div.

Figure 10-2

\[R_e = 62 \text{ mm} \quad R_i = 52 \text{ mm} \]

Durée impulsion : 60 s

Echelle : 10 s/div.

Figure 10-3

\[R_e = 79 \text{ mm} \quad R_i = 76 \text{ mm} \]

Durée impulsion : 60 s

Echelle : 10 s/div.

Figure 10-4

Lame plane

Épaisseur : 3 mm

Durée impulsion : 60 s

Echelle : 10 s/div.