GATA1 (GATA binding protein 1 (globin transcription factor1)))

Winston Y. Lee, Olga K. Weinberg

Lee, WY: Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, (WYL); Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, (OKW) USA

Published in Atlas Database: July 2019
Online updated version: http://AtlasGeneticsOncology.org/Genes/GATA1ID40689chXp11.html
DOI: 10.4267/2042/70724

This article is an update of: Izraeli S. GATA1 (GATA binding protein 1 (globin transcription factor1)). Atlas Genet Cytogenet Oncol Haematol 2005;9(2)

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 2.0 France Licence. © 2020 Atlas of Genetics and Cytogenetics in Oncology and Haematology

Abstract

We provide a survey of the disease entities associated with GATA1 mutations.

Keywords

GATA1; Transcription; Hematopoiesis; erythroid development; megakaryocytic development; Down syndrome; Transient abnormal myelopoiesis associated with Down Syndrome; Myeloid leukemia associated with Down syndrome; Diamond-Blackfan anemia; Dyserythropoietic anemia

Identity

Other names: ERYF1, GF1, NFE1
HGNC (Hugo): GATA1
Location: Xp11.23

DNA/RNA

Description

Genomic sequence 7,757 bases, mRNA six exons (five coding); Plus strand

Figure 1. Alternative models for generation of GATA1 isoforms. The full GATA1 protein can only be translated from the full GATA1 mRNA, whereas the GATA1s protein can be translated either from the full gata-1mRNA or from the shorter splice variant in which exon 2 is skipped.
GATA1 (GATA binding protein 1 (globin transcription factor1))

Trancription
mRNA 1497bp

Protein

Description
GATA1 is physiologically present as two protein isoforms that are derived from alternative splicing of the mRNA and the usage of an alternative translation initiation sites as shown in the Figure. The full length GATA1 protein is comprised of 413 amino acids with a predicted molecular weight of 42.7 KDa. The shorter form of the GATA1 protein (GATA1s) lacks the first 83 amino acid residues, which contains the so-called N-terminal activation domain (AD) (Gruber TA et al., 2015).

Both proteins contain two Zinc finger domains mediating protein interactions and DNA binding. The expression level and ratio of both GATA1 isoforms are thought to be important in directing the appropriate erythromegakaryocytic development.

Expression
Bone marrow: erythroid, megakaryocytic, mast cell and eosonophilic precursors.
Testis: Sertoli cells

Localisation
Nuclear

Function
Transcription Factor, essential for erythroid and megakaryocytic development

Homology
A member of the GATA-binding factor (GATA) family.

Mutations

Germinal
Implicated dyserythropoietic anemia with thrombocytopenia/ Macrothrombocytopenia, and in Diamond-Blackfan anemia

Somatic
Myeloid proliferation associated with Down syndrome, including:
- transient abnormal myelopoiesis associated with Down syndrome,
- myeloid leukemia associated with Down syndrome

Implicated in

Myeloid proliferation associated with Down syndrome, including transient abnormal myelopoiesis associated with Down Syndrome and myeloid leukemia associated with Down syndrome

Acquired somatic mutations resulting in the exclusive production of the short-form GATA1 protein (GATA1s) are pathognomonic in myeloid proliferation associated with Down syndrome (MP-DS) (Ahmed M et al, 2004; Groet J et al, 2003; Rainis L et al, 2003; Wechsler J et al, 2002). These mutations are often in the forms of nonsense or frame-shift mutations that result in premature stop codons in exon 2 or 3, while sparing the alternative start codon further downstream in the exon 3. GATA1 mutations can be detected in umbilical cord blood of DS patients and in fetal liver of aborted DS embryos; therefore, these mutations are thought to occur in-utero, likely during fetal liver hematopoiesis (Ahmed M et al, 2004; Taub JW et al, 2004). The presence of GATA1s in the absence of full length GATA1 is thought to block megakaryocytic differentiation and promote the proliferation of megakaryoblasts (Vyas P et al, 1999; Li Z et al, 2005; Lee WY et al, 2018). This disease entity only occurs in DS patients; however, the genes on chromosome 21 that enables the development of this disease are not known. MP-DS mostly occurs in children with DS younger than 5 years of age and manifests initially as transient abnormal myelopoiesis (TAM) within 7 days of birth. TAM is characterized by increased circulating megakaryocytic blasts, thrombocytopenia, and leukocytosis. The majority of cases of TAM undergo clonal extinction and spontaneously remit. However, about a third of the cases eventually recur within 3 years as myeloid leukemia associated with Down syndrome (ML-DS), which phenotypically resembles acute megakaryocytic leukemia and requires therapy. Next generation sequencing
Dyserythropoietic anemia

Dyserythropoietic anemia (DA), is a rare congenital red blood cell disorder characterized by anemia with erythro dysplasia (often abnormal forms with multinucleated nuclei) and varying degrees of macrothrombocytopenia with dysplastic megakaryocytes. There are several isolated case reports describing the roles of GATA1 mutations in a subset of DA, which often presents as severe fetal anemia requiring intratruncine transfusion (Zucker J et al., 2016; Abdulhay NJ et al., 2019; Khajuria RK, Munschauer M, Ulirsch JC, Diamond-Blackfan anemia (DBA) is a congenital condition characterized by isolated erythroid hypoplasia. Approximately half of the DBA cases are associated with germline mutations that result in haploinsufficiency of ribosomal proteins. A smaller subset of DBA cases, all of which are X-linked, is associated with germline GATA1 mutations, including substitution or splice site mutations involving exon 2 or 3 (Ludwig LS et al., 2014; Parrella S et al., 2014; Klar J et al., 2014; Sankaran VG, 2012). These mutations, similar to those seen in MP-DS (see above), create missense or nonsense mutations at the first start codon or premature stop codons before the second alternative start codon, thereby precluding the production of the full length GATA1 and leading to the exclusive production of the short form of GATA1 (GATA1s). Interestingly, several studies have suggested that in DBA with ribosomal protein haploinsufficiency exhibits altered translation of GATA1 mRNA, providing a possible converging mechanism of DBA (Ludwig LS et al., 2014; Khajuria RK et al., 2018).

Dyserythropoietic anemia

Dyserythropoietic anemia (DA), type I, II, and III. Some have proposed to include the GATA1 mutated DA cases as congenital dyserythropoietic anemia variants.

References


Izraeli S. Leukaemia -- a developmental perspective Br J Haematol 2004 Jul;126(1):3-10

Kratz CP, Niemeyer CM, Karow A, Volz-Fleckenstein M, Schmitt-Gräff A, Strahm B. Congenital transfusion-dependent anemia and thrombocytopenia with myelodysplasia due to a recurrent GATA1(G208R) germline mutation Leukemia 2008 Feb;22(2):432-4
Lee WY, Weinberg OK, Evans AG, Pinkus GS. Loss of Full-Length GATA1 Expression in Megakaryocytes Is a Sensitive and Specific Immunohistochemical Marker for the Diagnosis of Myeloid Proliferative Disorder Related to Down Syndrome Am J Clin Pathol 2018 Mar 7;149(4):300-309
Look AT. A leukemogenic twist for GATA1 Nat Genet 2002 Sep;32(1):83-4
Vyas P, Ault K, Jackson CW, Orkin SH, Shivedasani RA. Consequences of GATA-1 deficiency in megakaryocytes and platelets Blood 1999 May 1;93(9):2867-75

This article should be referenced as such:

Atlas Genet Cytogenet Oncol Haematol. 2020; 24(5): 200