Leukaemia Section
Short Communication

t(8;14)(q24;q32) in BPDCN

Jean-Loup Huret

Genetics, Dept Medical Information, University of Poitiers, CHU Poitiers Hospital, F-86021 Poitiers, France

Published in Atlas Database: August 2018

Online updated version : http://AtlasGeneticsOncology.org/Anomalies/t0814q24q32BPDCNID1828.html

Printable original version : http://documents.irevues.inist.fr/bitstream/handle/2042/70460/08-2018-t0814q24q32BPDCNID1828.pdf

DOI: 10.4267/2042/70460

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 2.0 France Licence.

Abstract

Review on t(8;14)(q24;q32) in BPDCN, with data on clinics

Keywords

Chromosome 8; chromosome 14; Blastic plasmacytoid dendritic cell neoplasm

Clinics and pathology

Disease

Blastic plasmacytoid dendritic cell neoplasm (BPDCN)

Note

BPDCN has been known with various names, including agranular CD4+ natural killer (NK) leukemia, CD4+/CD56+ hematodermic neoplasm, and blastic NK lymphoma. BPDCN malignant cells are derived from the precursors of plasmacytoid dendritic cells. It most commonly involves the skin. BPDCN is an aggressive neoplasm. BPDCN is often associated with a complex karyotype (review in Meloni-Ehrig 2017).

Epidemiology

In a series of 41 patients with BPDCN, five had a MYC rearrangement confirmed by FISH, one had a t(X:8)(q24;q24), one had a t(3:8)(p25;q24), two had a t(6;8)(p21;q24) MYC/SUPT3H, and one had a t(8;14)(q24;q32) (Boddu et al., 2018).

Clinics

The patient with a t(8;14)(q24;q32) was a 55 year-old male patient with skin involvement. He did not respond to treatment and died 12 months after diagnosis.

Cytogenetics

The t(8;14)(q24;q32) was the sole anomaly.

Genes involved and proteins

Note

The partner gene of MYC is unknown.

MYC

Location

8q24.21

DNA/RNA

MYC is composed of three exons spanning over 4 kb.

Protein

MYC is expressed in almost all proliferating cells. It is located predominantly in the nucleus. MYC is a transcriptional regulator, capable to induce or repress the expression of thousands genes. MYC is deregulated in cancer by several different mechanisms: chromosomal translocations, amplifications, point mutations, epigenetic reprogramming, enhanced translation and increased protein stability (review in Mohamed, 2017).

References

Mohamed AN. MYC (MYC proto-oncogene, bHLH transcription factor); Atlas Genet Cytogenet Oncol Haematol. in press

This article should be referenced as such:
Huret JL. t(8;14)(q24;q32) in BPDCN. Atlas Genet Cytogenet Oncol Haematol. 2019; 23(6):157-158.