t(11;12)(p15;q13) NUP98/HOXC11

t(11;12)(p15;q13) NUP98/HOXC13

Jean-Loup Huret

Genetics, Dept Medical Information, University of Poitiers, CHU Poitiers Hospital, F-86021 Poitiers, France

Published in Atlas Database: June 2018

Online updated version: http://AtlasGeneticsOncology.org/Anomalies/t1112ID1185.html

Printable original version: http://documents.irevues.inist.fr/bitstream/handle/2042/70186/06-2018-t1112ID1185.pdf

DOI: 10.4267/2042/70188

This article is an update of:

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 2.0 France Licence. © 2019 Atlas of Genetics and Cytogenetics in Oncology and Haematology

Abstract

Review on t(11;12)(p15;q13), with data on clinics, and the genes involved.

Keywords

Chromosome 11; Chromosome 12; NUP98; HOXC11; HOXC13; Acute myeloid leukemia; Therapy-related myeloid neoplasms

Identity

11 12

\[\text{t}(11;12)(p15;q13) \]

t(11;12)(p15;q13) G-banding - Courtesy Melanie Zenger and Claudia Haferlach.

Note

\[\text{t}(11;12)(p15;q13) \] with NUP98 and HOXC11 involvement has been described in 4 cases (Taketani et al., 2002; Gu et al., 2003), and with NUP98 and HOXC13 involvement in 3 additional cases (La Starza et al., 2003; Panagopoulos et al., 2003; Tosic et al., 2009).

Clinics and pathology

To be noted that NUP98 gene was found rearranged but HOXC genes were not tested or neither NUP98 nor HOX genes were tested in 5 cases (Roulston et al., 1998; and Kobzev et al., 2004 are identical cases), all of which were treatment-related MDS or AML (t-MDS or t-AML): a 9 mths old boy, 3 female patients aged 39 yrs, 41 yrs and 55 yrs, and one other male patient (Roulston et al., 1998; Nishiyama et al., 1999; Wong et al., 1998; Masuya et al., 2002; Kobzev et al., 2004; Schmidt-Hieber et al., 2010). Previous diseases were Hodgkin's disease in 2 cases, AML and breast cancer in one case each.

As noted by La Starza et al., 2009, a NUP98-positive acute myeloid leukemia with a \(\text{t}(11;12)(p15;q13) \) can occur without HOXC cluster gene involvement.

Disease

All the 7 cases with NUP98/HOXC hybrid gene were de novo acute myeloid leukemia: one AML without maturation (M1), four AML with maturation (M2), one acute myelomonocytic leukaemia (M4) and one acute monoblastic/monocytic leukaemia (M5b).

Epidemiology

Sex ratio was 2M/2F in HOXC11 cases and 0M/3F in HOXC13 cases; more cases are needed to determine if this discrepancy is coincidental/stochastic. Patients were aged 14, 22, 40 and 41 yrs in HOXC11 cases and 47, 57, 59 yrs in HOXC13 cases.

Prognosis

Two cases were in complete remission (5 mths+, NA), and four cases were reported to have died (8 mths, 8mths, 19 mths, NA).
Cytogenetics

Cytogenetics morphological
The t(11;12)(p15;q13) was the sole abnormality in all the 7 cases with NUP98/HOXC hybrid gene ascertained. In the 5 cases of therapy-related leukemia without ascertainment of a NUP98/HOXC hybrid gene, the t(11;12)(p15;q13) was the sole abnormality in 2 cases, and additional abnormalities were found: a t(17;21)(q11;q22) with RUNX1 rearrangement in 1 case, a +21 in 1 case and a del(7q) and other abnormalities in 1 case.

Genes involved and proteins

NUP98 (nucleoporin 98 kDa)
Location
11p15.4
DNA/RNA
Alternate splicings
Protein
920 amino acids (aa) and other isoforms; NUP98 belongs to the nucleoporin gene family and encodes a 186 kDa precursor protein that undergoes autoproteolytic cleavage to produce a 98 kDa and 96 kDa nucleoporins. The 98 kDa nucleoporin contains a Gly-Leu-Phe-Gly (GLFG and FG) repeat in N-term, a GLEBS-like motif (which binds RAE1), and a RNA binding motif in C-term. NUP98 is involved in nuclear import/export, mitotic progression, and regulation of gene expression (Duheron and Fahrenkrog, 2015).

HOXC11
Location
12q13.13; Starts at 53938792 and ends at 53946544 bp from pter (according to hg19-Feb_2009)
Note
HOXC11 starts 37627 nt after the end of HOXC11.
DNA/RNA
993 nt, 2 exons
Protein
304 aa; the protein localizes in the nucleus; sequence-specific transcription factor which contains a homeodomain with helix-turn-helix (HTH) motif in aa 233 to 289. Part of the Hox clusters.

There is a timing mechanism to synchronize Hox gene expression during embryogenesis ("Hox clock"). HOX genes regulates the expression of genes that are implicated during embryogenesis (anterior-posterior patterning and limbs developments). HOX genes are also expressed in adult tissues (review in Deschamps and Duboule, 2017).

Result of the chromosomal anomaly

Hybrid gene
Description
The NUP98 breakpoint was between exon 11 and 12 in three HOXC11 cases (Gu et al., 2003), and between exon 14 and 15 in the other HOXC11 case (Taketani et al., 2002). It was found between exon 15 and 16 in two HOXC13 cases (La Starza et al., 2003; Panagopoulos et al., 2003). The HOXC11 breakpoint was between exon 1 and 2 (Gu et al., 2003), or in exon 1 (Taketani et al., 2002). The HOXC13 breakpoint was between exon 1 and 2 (La Starza et al., 2003; Panagopoulos et al., 2003).
Fusion protein

Description

Fuses the N-term NUP98 to the C-term of HOXC11 or HOXC13. This corresponds to 469 aa or 628 aa from NUP98 in the HOXC11 cases and 715 aa in the HOXC13 cases fused to 77 aa from HOX11 (Gu et al., 2003), or 120 aa from HOX13 (Taketani et al., 2002).

References

Gu BW, Wang Q, Wang JM, Xue YQ, Fang J, Wong KF, Chen B, Shi ZZ, Shi JY, Bai XT, Wu DH, Chen Z, Chen SJ. Major form of NUP98/HOXC11 fusion in adult AML with t(11;12)(p15;q13) translocation exhibits aberrant trans-regulatory activity Leukemia. 2003 Sep;17(9):1858-64

Tosić N, Stojićkovć M, Colović N, Pavlovć M, Colović M, Pavlovć S. Acute myeloid leukemia with NUP98-HOX13 fusion and FLT3 internal tandem duplication mutation: case report and literature review Cancer Genet Cytogenet 2009 Sep;193(2):98-103

Wong KF, Kwong YL, So CC. De novo AML with trilineage myelodysplasia and a novel t(11;12)(p15;q13) Cancer Genet Cytogenet 1998 Jan 1;100(1):49-51

This article should be referenced as such: