t(6;8)(p21;q24) MYC/SUPT3H

Muntadhar Al Moosawi, Hélène Bruyère

Hematopathology, Department of Pathology and Laboratory Medicine, muntadhar.almoosawi@vch.ca (MAM); Vancouver General Hospital Cytogenetics Laboratory, Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada, helene.bruyere@vch.ca (HB)

Published in Atlas Database: May 2018
Online updated version: http://AtlasGeneticsOncology.org/Anomalies/t0608p21q24SUPT3H-MYCID2987.html
Printable original version: http://documents.irevues.inist.fr/bitstream/handle/2042/70026/05-2018-t0608p21q24SUPT3H-MYCID2987.pdf
DOI: 10.4267/2042/70026

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 2.0 France Licence. © 2019 Atlas of Genetics and Cytogenetics in Oncology and Haematology

Abstract

Review on t(6;8)(p21;q24), with data on clinics, and the genes involved.

Keywords

Blastic, plasmacytoid, dendritic, cell, neoplasm, t(6;8), chromosome 6, chromosome 8

Identity

Figure 1: t(6;8)(p21;q24.2), G-banding. Courtesy Hélène Bruyère.

Clinics and pathology

Disease

Blastic plasmacytoid dendritic cell neoplasm (BPDCN)

Phenotype/cell stem origin

Disease derives from precursors of plasmacytoid dendritic cells.

Epidemiology

The t(6;8) has been found in a limited subset of BPDCN: Less than 10 cases reported to date. Preponderance of male cases (7/8 to date). Average age 65 years, in keeping with BPDCN's mean/median age of 61-67 (WHO Classification of Tumours of Hematopoietic and Lymphoid Tissues, 2017).

Clinics

In general, BPDCN is an aggressive disease that most commonly involves the skin but can also infiltrate the bone marrow and peripheral blood as well as the lymph nodes.

Seven out of eight cases of t(6;8) reported so far had bone marrow involvement based on bone marrow biopsy (Boddu et al., 2018; Momoi et al., 2002; Takiuchi et al., 2012; Nakamura et al., 2015; Fu et al., 2013; personal communication).

One case reported by Leroux et al. in 2002 showed an extensive peripheral blood involvement with 95% circulating blasts. Although a bone marrow biopsy was not performed, the heavy involvement of peripheral blood, indicating bone marrow involvement, was sufficient to make the diagnosis.

Cytogenetics

Found with additional abnormalities in all cases, as the sole abnormality in the stemline in one case (Boddu et al., 2018), as a secondary abnormality in one case (Boddu et al., 2018), as part of a complex karyotype in 5/8 cases.
Table 1: Cases of BPDCN with t(6;8)(q21;q24). BM: bone marrow, LN: lymph node, PB: peripheral blood.

<table>
<thead>
<tr>
<th>Reference</th>
<th>Age</th>
<th>Sex</th>
<th>Site involved</th>
<th>Karyotype</th>
</tr>
</thead>
<tbody>
<tr>
<td>Momoi et al. 2002</td>
<td>69</td>
<td>M</td>
<td>BM, Skin</td>
<td>46, XY, add(5)(q11), add(5)(q31), t(6;8)(p21;q24), del(13)(q12q14), add(15)(q15)</td>
</tr>
<tr>
<td>Boddu et al. 2018</td>
<td>60</td>
<td>M</td>
<td>BM, Skin, LN</td>
<td>46,XY,del(13)(q12q22)[16]/46,idem,t(6;8)(p21;q24-1),del(14)(q24q32)[2]/46,idem,t(6;8)(p21;q24-1),del(14)q2q32[cp2]</td>
</tr>
<tr>
<td>Boddu et al. 2018</td>
<td>71</td>
<td>M</td>
<td>BM, Skin</td>
<td>46,XY,t(6;8)(p21;q24-2)[5]/47,idem,+18[1]/46,XY[4]</td>
</tr>
<tr>
<td>Takuchi et al. 2012</td>
<td>74</td>
<td>M</td>
<td>BM, spleen</td>
<td>47, XY, t(6;8)(p21;q24), +t</td>
</tr>
<tr>
<td>Nakamura et al. 2015</td>
<td>81</td>
<td>M</td>
<td>BM, Skin, LN</td>
<td>47,X,Y,t(6;8)(p21;q24), +add(7)(p11.2), +der(8)t(6;8), +20[17/20], 46,XY[3]/20 among LN cells; 48,X,Y,t(6;8)(p21;q24), +add(7)(p11.2), +der(8)t(6;8), +2[25/3]; 49,idem,+mar1[2/13], 49,idem,der(8)t(6;8), +21q22;q15, +mar1 2/13; 46, XY[3]/13</td>
</tr>
<tr>
<td>Fu et al. 2013</td>
<td>67</td>
<td>F</td>
<td>BM, LN</td>
<td>46,XX,del(5)(q13q33),t(6;8)(p21;q24)</td>
</tr>
<tr>
<td>Lecroz et al. 2002</td>
<td>74</td>
<td>M</td>
<td>PB (BM not performed)</td>
<td>49,XY,add(6)(q21), -2mar,-1[6]-49,idem,t(15;16)(q321;7q21),t(6;8)(q21),idem,t(3;5) (q21;7q31)[5], add wcp M.FISH 49 XY, +6t(6;8)(p21;q24), +t(12), +20/49, idem,inv(15)(q17q22), t(16;16)(q32;q32), +49,idem,t(3;5)(q21q31)[5]</td>
</tr>
<tr>
<td>Personal communication</td>
<td>29</td>
<td>M</td>
<td>BM, PB</td>
<td>44-45,X, Y,del1(Yp12p22),t(6;8)(p21 1.1q24 2)[cp5]/46,XY[1] nuc ida(MYC)x2, 5'MYC sep 3'MYCx1[3/7]</td>
</tr>
</tbody>
</table>

Figure 2: FISH image showing the presence of a normal (fused) MYC signal and separated 5'MYC signal from 3'MYC signal.

Figure 3: Image from immunohistochemistry with MYC antibody on bone marrow cells.
Of note, cytogenetic abnormalities are present in about two-thirds of BPDCN cases, involving chromosomes 5q34, 12p13, 13q13-21, 15q, and loss of chromosome 9 (WHO Classification of Tumours of hematopoietic and lymphoid tissues, 2017).

Prognosis

The prognosis of BPDCN is usually poor in adults (Bekkenk et al., 2004, Suzuki et al., 2005) and this appears to be true for cases with t(6;8). Two cases with this translocation failed to respond to treatment, the overall survival being 3 and 12 months respectively (Boddu et al., 2018). One patient relapsed three months after the initial diagnosis and treatment and received multiple lines of chemotherapy but eventually died because of septic shock nine months after the initial diagnosis (Momoi et al., 2002). The only female reported so far with t(6;8) received palliative chemotherapy and died two months after the initial diagnosis. Another patient responded to treatment and tumor cells in the peripheral blood disappeared in day 8; however, the patient died of septic shock on day 16 (Takiuchi et al., 2013). A 29-year-old male patient who was diagnosed with BPDCN with complex karyotype, including t(6;8) received ALL-based chemotherapy achieved complete morphological remission by day 24 of treatment and has been on sustained remission at least until this paper was written (personal communication).

Cytogenetics

The t(6;8)(p21.1;q24.2) is identified by conventional karyotyping.

Note: Other translocations involving 8q24 have been reported in BPDCN: t(8;14)(q24;q32), t(X;8)(q24;q24), t(3;8)(p25;q24) (Boddu et al., 2018; Nakamura et al., 2015).

Genes involved and proteins

MYC

Location 14q23.3

DNA/RNA DNA/RNA: CMYC is composed of three exons spanning over 4 kb with the second and third exons encoding most MYC protein.

SUPT3H

Location 6p21.1

DNA/RNA DNA/RNA: SUPT3H is composed of 22 exons with a size of 570 kb.

Result of the chromosomal anomaly

Hybrid gene

Description

The translocation has been shown to result in a split MYC signal when using a commercial MYC break-apart FISH probe (Nakamura et al., 2015, Boddu et al., 2018). Involvement of the MYC gene has also been inferred from the positive MYC immunochemistry observed on bone marrow slides (Nakamura et al., 2015, Boddu et al., 2018). Molecular analysis of the 8q24 breakpoint showed that it occurred in the PVT1 gene on chromosome 8 (Nakamura et al., 2015; Fu et al., 2013; Jardin et al., 2009). PVT1 is located 149 kb telomeric to MYC. It is a long non-coding RNA located within the interval between the 5′ MYC probe and 3MYC commercial probes used to identify MYC rearrangements. Jardin et al. in 2009 found, in BPDCN, a 5.6-Mb interstitial deletion on 8q24 involving PVT1 bringing MYC oncogene adjacent to miR-30b/30c leading to possible up-regulation of these genes.

References

t(6;8)(p21;q24) MYC/SUPT3H

Al Moosawi M and Bruyère H

prognostication and categorization according to anatomic sites of involvement. Cancer. 2005 Sep 1;104(5):1022-31.

Wiesner T, Obenauf AC, Cota C, Fried I, Speicher MR, Cerroni L,. Alterations of the cell-cycle inhibitors p27(KIP1) and p16(INK4a) are frequent in blastic plasmacytoid dendritic cell neoplasms. J Invest Dermatol. 2010 Apr;130(4):1152-7

This article should be referenced as such: