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Abstract 

XRCC2 is one of five somatic RAD51 paralogs, all 

of which have Walker A and B ATPase motifs. 

Each of the paralogs, including XRCC2, has a 

function in DNA double-strand break repair by 

homologous recombination (HR). However, their 

individual roles are not as well understood as that 

of RAD51 itself.  

The XRCC2 protein forms a complex (BCDX2) 

with three other RAD51 paralogs, RAD51B, 

RAD51C and RAD51D. It is believed that the 

BCDX2 complex mediates HR downstream of 

BRCA2 but upstream of RAD51, as XRCC2 is 

involved in the assembly of RAD51 into DNA 

damage foci. XRCC2 can bind DNA and, along 

with RAD51D, can promote homologous pairing in 

vitro. Consistent with its role in HR, XRCC2-

deficient cells have increased levels of spontaneous 

chromosome instability, and exhibit 

hypersensitivity to DNA interstrand crosslinking 

agents such as mitomycin C and cisplatin as well as 

ionizing radiation, alkylating agents and aldehydes. 

XRCC2 also functions in promoting DNA 

replication and chromosome segregation.  

Biallelic mutation of XRCC2 (FANCU) causes the 

FA-U subtype of FA, while heterozygosity for 

deleterious mutations in XRCC2 may be associated 

with an increased breast cancer risk. XRCC2 

appears to function 'downstream' in the FA 

pathway, since it is not required for FANCD2 

monoubiquitination, which is the central step in the 

FA pathway.  

Clinically, the only known FA-U patient in the 

world exhibits severe congenital abnormalities, but 

had not developed, by seven years of age, the bone 

marrow failure and cancer that are often seen in 

patients from other FA complementation groups. 
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Identity 

Other names: FANCU 

HGNC (Hugo): XRCC2 

Location: 7q36.1 

Local order 

As outlined by NCBI (Gene), coding genes located 

most proximal to XRCC2 on 16p12.2, in the 

centromeric to telomeric direction, are GALNTL5 

(polypeptide N-acetylgalactosaminyltranserase like 

5), GALNT11 (polypeptide N-

acetylgalactosaminyltransferase 11), KMT2C 

(lysine methyltransferase 2C), XRCC2, ACTR3B 

(ARP3 actin related protein 3 B homolog B), DPP6 

(dipeptidyl peptidase like 6), and LOC107984014. 

DNA/RNA 
In a screen for X-ray sensitive cellular mutants in 

Chinese hamster ovary (CHO) cells, the irs1 clone, 

which was thought to be deficient in a novel DNA 

repair gene, was obtained (Jones et al., 1987).  
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Exon structure of the human XRCC2 gene. Exons are delineated by a vertical black line. For each exon, coding sequence is 
shown in grey, while non-coding sequence in exons 1 and 3 is displayed in white. 

 

Two groups subsequently mapped the region 

containing the defective gene to 7q36.1 in humans 

based on somatic cell hybrids capable of 

complementing the hypersensitivity of irs1 cells to 

the DNA interstrand crosslinking agent mitomycin 

C (MMC) (Jones et al., 1995; Thacker et al., 1995). 

The human cDNA was subsequently identified as a 

novel gene with considerable homology on the 

protein level to the RAD51 recombinase (Liu et al., 

1998). The single protein coding human mRNA 

transcript (XRCC2-201), with a length of 3067 bp, 

has three coding exons (for a protein of 280 a.a.) 

arranged as shown below: 

Description 

The human XRCC2 gene locus is 29.66 kb in 

length. 

Transcription 

The single full-length transcript for human XRCC2 

is 3,067 bp and there are no additional confirmed 

protein coding variants known 

(http://www.ensembl.org/Homo_sapiens/Gene/Sum

mary?db=core;g=ENSG00000196584;r=7:1526447

79-152676165). 

Protein 

Note 

The five somatic mammalian RAD51 paralogs, 

RAD51B, RAD51C, RAD51D, XRCC2 and 

XRCC3, form two prominent paralog-only protein 

complexes. These are the RAD51B-RAD51C-

RAD51D-XRCC2 (BCDX2) and RAD51C-

XRCC3 (CX3) complexes (Liu et al., 2002; 

Masson et al., 2001). RAD51C, which like XRCC2 

is a FA protein, is the only member of both 

complexes. As demonstrated using a yeast 2-hybrid 

assay, XRCC2 directly binds RAD51D within the 

BCDX2 complex (Schild et al., 2000). Further, 

experiments with purified proteins expressed in 

insect cells indicate that RAD51D bridges RAD51C 

and XRCC2 together (Schild et al., 2000). The 

RNF138 E3 ubiquitin ligase appears to regulate the 

interaction of RAD51D with XRCC2 by 

ubiquitinating RAD51D and promoting ubiquitin-

mediated degradation of this RAD51 paralog (Yard 

et al., 2016). XRCC2 itself regulates the abundance 

of the BCDX2 complex, since the RAD51B, 

RAD51C and RAD51D proteins display decreased 

stability in the absence of XRCC2 (Park et al., 

2016).  

Other proteins, including RAD51 (Rodrigue et al., 

2006) and HELQ, directly interact with the 

assembled BCDX2 complex (Adelman et al., 2013; 

Takata et al., 2013). It has also been reported that 

the BLM helicase interacts with the RAD51D-

XRCC2 complex via direct binding to RAD51D 

(Braybrooke et al., 2003).  

XRCC2 is essential for normal development in 

mice, as disruption of the Xrcc2 gene results in 

embryonic lethality ranging from mid-gestation to 

birth (Deans et al., 2000). 

Description 

While each of the five somatic RAD51 paralogs in 

humans has a somewhat similar size as RAD51, the 

paralogs show relatively low homology to RAD51. 

Specifically, the human XRCC2 protein has a size 

of 34 kD while human RAD51 has a molecular 

mass of 37 kD; human XRCC2 is 20% identical to 

human RAD51 at the amino acid level (Liu et al., 

1998).  

Still, each of the RAD51 paralogs, including 

XRCC2, shares Walker A and Walker B ATPase 

motifs with RAD51. The Walker A and Walker B 

motifs in human XRCC2 are present at a.a. 48-55 

and 145-149, respectively (Miller et al., 2004), as 

shown below. No other functional domains have 

been identified in XRCC2. 

Expression 

According to the Human Protein Atlas (online), 

XRCC2 mRNA is expressed in cell lines 

representing a variety of tissue types, including the 

brain, skin, myeloid and lymphoid compartments, 

lung, breast and kidney.  

The transcription factors MYC and ZNF281 bind to 

the XRCC2 promoter (Luoto et al., 2010; 

Pieraccioli et al., 2016).  

Further, it has been demonstrated that ZNF281 

positively regulates XRCC2 expression (Pieraccioli 

et al., 2016).  

Additionally, EZH2, a subunit of the PRC2 

transcriptional repressor complex, may have a role 

in downregulating XRCC2 expression, as increased 

expression of EZH2 in breast cancer cells is 

associated with epigenetic repression of XRCC2 

and other RAD51 paralogs (Zeidler and Kleer, 

2006). 
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Known functional domains present in XRCC2: the Walker A and B ATPase motifs are diagramed in black. 

 

Localisation 

Consistent with its role in DNA repair, XRCC2 is a 

nuclear protein (O'Regan et al., 2001). When 

assayed by immunofluorescence microscopy and 

chromatin immunoprecipitation, XRCC2 localizes 

to engineered DNA double-strand breaks (DSBs) in 

nuclei (Rodrigue et al., 2006). RAD51C also 

colocalizes with γ-H2AX in nuclear foci induced by 

etoposide (Rodrigue et al., 2006). Aside of its 

nuclear localization, XRCC2 also localizes to 

centrosomes within the cytoplasm (Cappelli et al., 

2011). 

Function 

Each of the five somatic RAD51 paralogs, 

including XRCC2, is required for DNA repair by 

homologous recombination (HR) (Johnson et al., 

1999; Takata et al., 2001). However, the role of 

XRCC2 and other RAD51 paralogs in promoting 

HR is less well understood than that of RAD51, 

which is the main mammalian recombinase. Still, 

molecular details concerning the role of XRCC2 in 

HR are emerging. For example, XRCC2 and other 

RAD51 paralogs appear to act upstream of RAD51 

and regulate its assembly into nuclear foci (Chun et 

al., 2013; Park et al., 2016; Patel et al., 2017; 

Takata et al., 2001). Further, purified XRCC2 can 

stimulate the ATPase activity of RAD51, thereby 

promoting the stability of the RAD51 oligomer and 

enhancing RAD51-dependent strand exchange 

during HR (Shim et al., 2004). While it is currently 

unclear whether this function of XRCC2 occurs 

within the context of the BCDX2 complex, the 

presence of XRCC2 favors short-tract gene 

conversion over long-tract gene conversion 

(Nagaraju et al., 2009). Interestingly, work in 

Arabidopsis thaliana has demonstrated the 

existence of a RAD51-independent single-strand 

annealing (SSA) mechanism involving XRCC2, 

RAD51B and RAD51D (Serra et al., 2013); like 

HR, SSA is also a homology-dependent form of 

DNA repair. XRCC2 could also play a more direct 

role in HR than what is described above, since 

purified XRCC2 and RAD51D can stimulate 

homologous pairing of single-strand DNA with 

double-strand DNA in vitro (Kurumizaka et al., 

2002).  

Additional data suggests that XRCC2 functions in 

HR in the context of the previously mentioned 

BCDX2 protein complex. The fact that the BCDX2 

complex binds Holliday junctions in vitro  

(Yokoyama et al., 2004) supports this possibility. 

BRCA2, which also regulates the assembly of 

RAD51 foci, appears to be epistatic with the 

BCDX2 complex in mediating HR (Chun et al., 

2013).  

The BCDX2 complex also binds to replication 

forks in vitro (Yokoyama et al., 2004). In support of 

a function in rescuing stalled or collapsed 

replication forks, XRCC2-deficient cells display 

compromised replication fork dynamics (Daboussi 

et al., 2008). This is consistent with the fact that HR 

is known to function in promoting the stability and 

rescue of arrested replication forks (Kolinjivadi et 

al., 2017).  

As a mediator of HR, XRCC2 also suppresses 

spontaneous chromosome abnormalities including 

breaks, deletions and translocations (Cui et al., 

1999; Takata et al., 2001).  

Also, related to its function in HR, XRCC2-

deficient cells are hypersensitive to a variety of 

DNA damaging agents that directly or indirectly 

yield DNA double-strand breaks, including ionizing 

radiation, DNA interstrand crosslinking agents such 

as mitomycin C (MMC) and cisplatin, aldehydes, 

tirapazamine and temozolomide (Evans et al., 2008; 

Jones et al., 1987; Park et al., 2016; Roos et al., 

2009; Zheng et al., 2012). Another function of 

XRCC2 that is potentially related to HR is in 

promoting accurate chromosome segregation and 

preventing mitotic catastrophe (Cappelli et al., 

2011; Daboussi et al., 2005; Griffin et al., 2000). 

However, it has been reported that XRCC2 

localizes to centrosomes and it is possible that 

polyploidy or aneuploidy observed in XRCC2-

deficient cells is associated with supernumerary 

centrosomes rather than a DNA repair defect 

(Cappelli et al., 2011; Daboussi et al., 2005; Griffin 

et al., 2000).  

Associated with its function in HR, XRCC2 also 

plays an essential role in promoting normal 

development (Deans et al., 2000). This includes a 

function in promoting normal lymphocyte 

development (Caddle et al., 2008). Also, XRCC2 

promotes survival of proliferating neural precursors 

in vivo (Orii et al., 2006). 

Homology 

Based on HomoloGene (NCBI), the following are 

homologs of the human XRCC2 gene 

(NP_005422.1, 280 a.a.):  

Chimpanzee (Pan troglodytes) XP_001140134.1, 

280 a.a.  
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Rhesus monkey (Macaca mulatta) 

XP_001108141.1, 280 a.a.  

Dog (Canis lupus familiaris) XP_532771.3, 279 a.a.  

Cattle (Bos taurus) NP_001095824.1, 280 a.a.  

Mouse (Mus musculus) NP_065595.2, 278 a.a.  

Rat (Rattus norvegicus) NP_001102685.1, 278 a.a.  

Chicken (Gallus gallus) XP_418543.3, 278 a.a.  

Tropical Clawed Frog (Xenopus tropicalis) 

XP_002932541.2, 282 a.a. 

Mutations 
Note 

Generally, germ-line alterations in XRCC2 are 

quite rare. In the largest study to date, of 13,087 

breast cancer and 5,488 control cases from the UK, 

a total of 11 truncating and 32 rare missense 

variants were found (Decker et al., 2017). A recent 

study functionally characterized breast cancer-

associated variants and found that each of the 

truncating or frameshift variants displayed 

compromised activity, while most of the missense 

variants tested displayed a minor change or no 

change in activity (Hilbers et al., 2016). Notably, a 

bi-allelic germ-line nonsense mutation in XRCC2 

c.643C>T encoding p.R215X is causative for the U 

complementation group of Fanconi anemia, FA-U 

(Park et al., 2016; Shamseldin et al., 2012).  

XRCC2 was initially published as a low-risk breast 

cancer susceptibility gene, similar to other late FA 

genes such as BRCA1, BRCA2, PALB2 and 

RAD51C (Park et al., 2012). However, subsequent 

studies could not confirm these findings and also 

presented data that the initial missense 

classification based on bioinformatic prediction 

tools was not correct (see below -> Breast Cancer) 

(Decker et al., 2017; Hilbers et al., 2012; Pelttari et 

al., 2015). 

Epigenetics 

Increased levels of the PRC2 subunit, EZH2, leads 

to epigenetic repression of XRCC2 in breast cancer 

cells (Zeidler and Kleer, 2006). Additionally, miR-

7 interacts with XRCC2 mRNA in colorectal cancer 

cells; overexpression of miR-7 reduces XRCC2 

promoter activity (Xu et al., 2014). Interestingly, 

XRCC2 promoter activity seems to be highly up-

regulated in nearly all types of cancers (Chen et al., 

2018). 

Implicated in 

Fanconi Anemia (FA) 

Note 

Germ-line bi-allelic and heterozygous mutations of 

XRCC2 (FANCU) are associated with different 

outcomes. Bi-allelic inactivating mutation of 

XRCC2 results in the FA-U subtype, while 

heterozygous inheritance of pathogenic XRCC2 

mutations might increase the lifetime risk of germ-

line mutation carriers for developing breast cancer. 

Disease 

Using whole exome sequencing, bi-allelic 

mutations in RAD51C were found in a 2.5 year old 

boy born to healthy Saudi first cousins with a 

spectrum of severe congenital anomalies suggestive 

of FA. These included microcephaly, facial palsy, a 

lack of thumbs, short stature and an ectopic left 

kidney (Shamseldin et al., 2012). Importantly, bi-

allelic loss-of-function mutations were detected in 

two other genes, MTBP and RGS3, in addition to 

XRCC2 (Shamseldin et al., 2012). The authors 

scrutinized these genes with bi-allelic mutations, 

since this inheritance pattern is typical of FA. 

XRCC2 emerged as a candidate FA gene, in part 

because another RAD51 paralog, RAD51C, had 

previously been identified as a FA gene (Vaz et al., 

2010). However, as loss-of-function mutations were 

present in other genes, XRCC2 could not be 

reliably established as causative for the clinical 

phenotype in this initial study. A subsequent study 

demonstrated that XRCC2 (FANCU) is indeed the 

20th FA gene based on the correction, following 

expression of XRCC2, of cellular phenotypes that 

are characteristic of FA cells (Park et al., 2016). 

These phenotypes included complementation of 

cellular hypersensitivity to MMC, correction of 

MMC-induced chromosome aberrations (total 

aberrations including breaks, gaps, radial and ring 

chromosomes, and number of radial chromosomes 

specifically), and MMC-induced cell cycle 

accumulation in G2-M (Park et al., 2016). 

However, the patient had normal blood counts and 

had not displayed cancer through age 7 (Park et al., 

2016; Shamseldin et al., 2012).  

To date, 22 FA or FA-like genes have been 

identified (Nepal et al., 2017). FA genes are 

autosomal recessive tumor suppressor genes, except 

for the X-linked FANCB and the autosomal 

dominant RAD51 (FANCR). The 

monoubiquitination of the FANCD2/ FANCI 

protein dimer is the central step in the FA pathway. 

FANC -A, -B, -C -E, -F, CC: TXT: -G ID: 295>, -

L, -M, UBE2T (FANC-T)  are early (or upstream) 

FA genes, since loss of function mutations in any of 

these genes results in defective monoubiquitination 

of FANCD2/I (Mamrak et al., 2017; Nepal et al., 

2017). Late/downstream FA genes, which are 

associated with normal monoubiquitination of 

FANCD2 and FANCI when mutated include: 

BRCA2 (FANCD1), BRIP1 (FANCJ), PALB2 

(FANCN), RAD51C (FANCO), RAD51 (FANCR), 

BRCA1 (FANCS), XRCC2 (FANCU), MAD2L2 

(FANCV/polTheta) and RFWD3 (FANCW). 

Typical of late/downstream FA genes, FA-U cells 

display defective assembly of RAD51 foci in 

response to DNA damage (Park et al., 2016).  
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The vast majority of FA patients have bi-allelic 

mutations in the upstream FA genes, notably 

FANCA, FANCC and FANCG, and display clinical 

features characteristic of FA. These include 

progressive bone marrow failure around 7.6 years 

of age, a variety of congenital anomalies, and a 

predisposition to acute myeloid leukemia as well as 

various solid tumors that occur in the second and 

third decade of life (Kutler et al., 2003). 

Microcephaly, short stature, skin pigmentation 

defects, hypogonadism, and radial ray anomalies, 

many of which were observed in the single FA-U 

patient identified until present, are among the 

congenital anomalies that are often observed. 

Endocrine abnormalities are also seen in a 

significant number of FA patients (Rose et al., 

2012).  

Certain other FA complementation groups such as 

FA-O, defined by RAD51C (FANCO) mutations, 

and FA-R, defined by heterozygous dominant-

negative RAD51 (FANCR) mutation, have been 

designated atypical FA (or FA-like) because of the 

absence of bone marrow failure and no increased 

incidences of cancer (Park et al., 2016). However, 

bone marrow failure and cancer are not always 

observed for every patient in each FA 

complementation group and the single FA-U patient 

identified so far has not reached the age at which 

these features are frequently observed (Kutler et al., 

2003). Therefore it is not yet clear whether or not 

patients with germ-line bi-allelic defects in XRCC2 

represent atypical FA. 

Breast Cancer 

Disease 

In a collaborative exome-sequencing study 

involving patients from the Netherlands, Spain and 

Australia, Park et al. identified 6 out of 1308 

patients with early-onset breast cancer as having 

likely deleterious mutations in XRCC2, while none 

of the 1,120 controls carried such a mutation. Two 

of the six mutations were frameshift mutations 

(p.Arg17* and p.Cys217*) and 4 of the 6 were 

missense alterations with single a.a. exchanges that 

were predicted by three algorithms to be associated 

with a loss-of-function (Park et al., 2012). As the 

frequency at which these variants occurred in breast 

cancer patients, as compared to controls, was 

statistically significant, XRCC2 was identified by 

the authors as a low frequency breast cancer 

susceptibility gene.  

However, no other study so far has confirmed 

mutation of XRCC2 as a significant cause of 

inherited breast cancer (Hilbers et al., 2016; Hilbers 

et al., 2012; Pelttari et al., 2015). For example, 

Hilbers et al. analysed the coding region of 3548 

non-BRCA1/2 familial breast cancer cases and 

1435 healthy controls (Hilbers et al., 2012). In the 

patient group, they detected only one patient with a 

protein truncation mutation and 20 patients with 

missense alterations, as compared to nine controls 

with missense variants. Importantly, in 2016, 

Hilbers et al. functionally analyzed all 

nonsynonymous coding variants from the two 

major studies published in 2012 (Hilbers et al., 

2012; Park et al., 2012). Out of 24 missense 

alterations, only four variants had a reduced 

functional activity with 50-75% rescue in two out 

of three assays (Hilbers et al., 2016).  

Finally, Decker et al. sequenced the XRCC2 coding 

region of 13,087 breast cancer patients and 5488 

healthy controls from the UK (Decker et al., 2017). 

Only 13 carriers of truncating XRCC2 variants 

were found, nine in breast cancer patients and four 

in controls. There were also no statistical 

differences for 32 rare missense variants between 

the patient and control groups. Thus these authors 

concluded that truncating/loss-of-function 

mutations in XRCC2 are not associated with an 

increased risk of breast cancer (Decker et al., 2017), 

and therefore germ-line mutation of XRCC2 is not 

a major cause of inherited breast cancer (Decker et 

al., 2017; Hilbers et al., 2012). 

Prognosis 

Because XRCC2 has an important role in HR, it is 

likely that tumors with loss-of-function of XRCC2 

may be particularly responsive to poly (ADP-

ribose) polymerase (PARP) inhibitors. In support of 

this possibility, FA cells from the FANCU 

complementation group, which have biallelic 

mutation of XRCC2, have increased sensitivity to 

the PARP inhibitor olaparib, as compared to 

complemented cells (Park et al., 2016). Thus, 

identification of breast cancer patients, and perhaps 

other cancer patients, with deleterious somatic 

variants of XRCC2 may be a basis for such 

personalized treatments. 
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