t(X;10)(p11;p12) DDX3X/MLLT10

Tatiana Gindina

Gorbacheva Research Institute of Pediatric Oncology Hematology and Transplantation at First Saint-Petersburg State Medical University named I.P.Pavlov, Saint-Petersburg, Russia / tatgindina@gmail.com

Published in Atlas Database: November 2016

Online updated version : http://AtlasGeneticsOncology.org/Anomalies/t0X10p11p12ID1701.html

Printable original version : http://documents.irevues.inist.fr/bitstream/handle/2042/68541/11-2016-t0X10p11p12ID1701.pdf

DOI: 10.4267/2042/68541

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 2.0 France Licence.

© 2017 Atlas of Genetics and Cytogenetics in Oncology and Haematology

Abstract

Review on t(X;10)(p11;p12), with data on clinics and the genes involved.

Keywords

chromosome X; chromosome 10; acute lymphoblastic leukemia; T-cell; DDX3X; MLLT10

Clinics and pathology

Disease

T-Acute lymphoblastic leukemia/lymphoma

Phenotype/cell stem origin

In two cases T-ALL was arrested at cortical stage. In the other 3 patients, immunophenotype was incomplete or not available [Brandimarte et al, 2013, 2014].

Epidemiology

t(X;10)(p11;p12) DDX3X/MLLT10 occurs in approximately 3% of adult T-ALL and characterizes a subgroup of NOTCH1 positive leukemias.

All five T-ALL patients were males aged 11 - 38 years (median 24.4 years). Treatment

All patients achieved hematologic remission but 3 relapsed and died. Two patients are alive, one of them was treated by HLA identical Hematopoietic stem cell transplantation (HSCT).

Cytogenetics

Additional anomalies

see above; notably: del(9p) in 4 cases, del(5q) and del(6q) in 1 case.

Genes involved and proteins

DDX3X (DEAD-box helicase 3, X-linked)

Location Xp11.4

Protein

DDX3X is a member of the large family of RNA helicases with a DEAD box domain that is involved in RNA transcription, splicing, mRNA transport, translation initiation, and cell-cycle regulation [Rosner et al, 2007].

Somatic mutations

DDX3X somatic mutations have recently been discovered in medulloblastoma, chronic lymphocytic leukemia, and Burkitt lymphoma. Recurrent DDX3X homozygous deletions were identified in gingivobuccal oral squamous cell carcinoma [Brandimarte L., et al, 2013].

MLLT10 (myeloid/lymphoid or mixed-lineage leukemia (trithorax homolog, Drosophila); translocated to, 10)

Location 10p12.31
Protein

MLLT10 contains 3 Zn fingers and a leucine zipper; nuclear localisation; transcription factor [Morerio and Panarello, 2005]

Result of the chromosomal anomaly

Fusion protein

Oncogenesis

DDX3X is one of the genes that escapes X-inactivation in females [Lahn B.T. et al., 1997]. As all patients with DDX3X-MLLT10 positive T-ALL were males, no wild-type DDX3X allele was retained in the leukemic blasts, suggesting that the complete absence of a normally functional DDX3X protein might contribute to leukemogenesis. DDX3X appeared to have oncogenic as well as tumor suppressor functions [Change P.C. et al., 2006; Botlagunta M. et al., 2008; Brandimarte L., et al, 2014].

References

This article should be referenced as such: