Gene Section
Review

ATM (ataxia telangiectasia mutated)

Yossi Shiloh

The David and Inez Myers Chair in Cancer Research, Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel; yossih+AEA-post.tau.ac.il

Published in Atlas Database: October 2016
Online updated version: http://AtlasGeneticsOncology.org/Genes/ATMID123.html
Printable original version: http://documents.irevues.inist.fr/bitstream/handle/2042/68260/10-2016-ATMID123.pdf
DOI: 10.4267/2042/68260

This article is an update of:

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 2.0 France Licence.
© 2017 Atlas of Genetics and Cytogenetics in Oncology and Haematology

Abstract

Review on ATM, with data on DNA, on the protein encoded, and where the gene is implicated.

Keywords
Ataxia telangiectasia; Cerebellar ataxia; Telangiectasia; Immune deficiency; T-cell malignancies; B-cell malignancies; Carcinomas; Senescence; Chromosome instability syndrome; DNA double-strand breaks; Translocation; Oxidative stress; Homeostasis; ATM; chromosome.

Identity
HGNC (Hugo): ATM
Location: 11q22.3

Note
See also, in Deep Insight section: Ataxia-Telangiectasia and variants.

DNA/RNA

Description
The ATM gene extends over 184 kb and contains 66 exons producing a 13 kb mRNA (Uziel T et al., 1996; Platzer M et al., 1997); numerous Alu and Lime sequences.

Transcription
Alternative exons 1a and 1b; initiation codon lies within exon 4; 12 kb transcript with a 9.2 kb of coding sequence.

The ATM promotor is bi-directional and also directs the transcription of the NPAT gene.

Protein

Description
ATM is a homeostatic protein kinase with an extremely broad range of roles in various cellular circuits (Shiloh Y et al., 2013; Guleria A et al., 2016; Shiloh Y, 2014; Cremona CA et al., 2014; Ambrose M et al., 2013; Espach Y et al., 2015; Awasthi P et al., 2016). This large polypeptide of 350 kDa and 3,056 residues bears a PI3 kinase signature within its carboxy-terminal catalytic site, but has the catalytic activity of a serine-threonine protein kinase. This motif is characteristic of a protein family of which ATM is a member - the PI-3 kinase-like protein kinases (PIKKs; Lovejoy CA et al., 2009; Bareti+ACY-cacute;cute; D et al., 2014).
This family also contains the MTOR protein, which regulates many signaling pathways in response to nutrient levels, growth factors and energy balance (Alayev A et al., 2013; Cornu M et al., 2013); the catalytic subunit of the DNA-dependent protein kinase (DNA-PKcs), which is involved in the NHEJ pathway of double strand breaks (DSB) repair and other genotoxic stress responses (Davis AJ et al., 2014; Jette N et al., 2015), SMG1, which plays a key role in nonsense-mediated mRNA decay (Yamashita A, 2013); and ATR, which responds to stalled replication forks and a variety of DNA lesions that lead to the formation of single-stranded DNA, including deeply resected DSBs (Errico A et al., 2012; Mar+ACY-ecucet:chal A et al., 2013; Awasthi P et al., 2016). The redundancy, crosstalk and collaboration between the latter three PIKKs, which collectively respond to a broad spectrum of genotoxic stresses, are being extensively investigated (Lovejoy CA et al., 2009; Mar+ACY-ecucet:chal A et al., 2013; Sirbu BM et al., 2013; Thompson LH, 2012; Gobbini E et al., 2013; Chen BP et al., 2012). It should be noted that in A-T patients, the two PIKKs that converse and cooperate with ATM in the response to genotoxic stress, ATR and DNA-PK, remain active. In view of the functional relationships between the three protein kinases, some of ATM's duties are probably carried out to a certain extent by ATR and/or DNA-PK, in A-T cells. On the other hand, the lack of a very versatile member of this trio may lead to some suboptimal responses of the other two, if they depend on the crosstalk with ATM. This interesting question is a subject of intensive research.

Expression
ATM is expressed in all tissues.

Localisation
Mostly in the nucleus throughout all stages of the cell cycle.

Function
Homeostatic protein kinase involved in many cellular circuits. A primary role in the DNA damage response. Activated vigorously by DNA double-strand breaks and activates a broad network of responses. ATM initiates cell cycle checkpoints in response to double-strand DNA breaks by phosphorylating TP53, BRCA1, H2AFX, ABL1, NFkBIA and CHEK1, as well as other targets; in certain types of tissues ATM inhibits radiation-induced, TP53-dependent apoptosis.

Double strand breaks
The most widely documented function of ATM, and the one associated with its most vigorous activation, is the mobilization of the complex signaling network that responds to DSBs in the DNA (Shiloh Y et al., 2013; Cremona CA et al., 2014; Awasthi P et al., 2016; Thompson LH, 2012; McKinnon PJ, 2012). DSBs are induced by exogenous DNA breaking agents or endogenous reactive oxygen species (Schieber M et al., 2014), and are an integral part of physiological processes including meiotic recombination (Borde V et al., 2013; Lange J et al., 2011) and the rearrangement of antigen receptor genes in the adaptive immune system (Alt FW et al., 2013). DSBs are repaired via nonhomologous end-joining (NHEJ), or homologous recombination repair (HRR; Shibata A et al., 2014; Chapman JR et al., 2012; Jasim M et al., 2013; Radhakrishnan SK et al., 2014). DSBs also activates the DDR, a vast signaling network that mobilizes special cell cycle checkpoints, extensively alters the cellular transcriptome, and changes the turnover, activity and function of numerous proteins that ultimately leads to modulation of numerous cellular circuits. This network is based on a core of dedicated DDR players and the ad-hoc recruitment of proteins from many other arenas of cellular metabolism, which typically undergo special, damage-induced post-translational modifications (PTMs; Shiloh Y et al., 2013; Sirbu BM et al., 2013; Thompson LH, 2012) (Goodarzi AA et al., 2013; Panier S et al., 2013; Polo SE et al., 2011).

Once ATM mobilizes the vast DDR network in response to a DSB (McKinnon PJ, 2012; Shiloh Y et al., 2013; Bhatti S et al., 2011), its protein kinase activity is rapidly enhanced, and PTMs on the ATM molecule are induced, including several autophosphorylations and an acetylation (Shiloh Y et al., 2013; Bhatti S et al., 2011; Bakkenet CJ et al., 2003; Kozlov SV et al., 2006; Bensimon A et al., 2010; Sun Y et al., 2007; Kaidi A et al., 2013; Paull TT, 2015).

ATM subsequently phosphorylates key players in various arms of the DSB response network (Shiloh Y et al., 2013; Bensimon A et al., 2010; Matsuoka S et al., 2007; Mu JJ et al., 2007; Bensimon A et al., 2011), including other protein kinases that in turn phosphorylate still other targets (Bensimon A et al., 2011).

Single-strand break repair and base excision repair
A broader, overarching role for ATM in maintaining genome stability was recently suggested in addition to mobilizing the DSB response (Shiloh Y, 2014). According to this conjecture, ATM supports other DNA repair pathways that respond to various genotoxic stresses, among them single-strand break repair (SSBR; Khoronenkova SV et al., 2015) and base excision repair (BER) - a cardinal pathway in dealing with the daily nuclear and mitochondrial DNA damage caused by endogenous agents (Wallace SS, 2014; Bauer NC et al., 2015).

ATM's involvement in these processes is based on its ability to phosphorylate proteins that function in these pathways. In this way ATM also takes part also in resolving non-canonical DNA structures that arise
in DNA metabolism, and in regulating other aspects of genome integrity such as nucleotide metabolism, the response to replication stress, and resolution of the occasional conflicts that arise between DNA damage and the transcription machinery. ATM is not critical for any of these processes in the same way it is for the DSB response, but rather contributes to their regulation (in most cases, their enhancement) when the need arises (Shiloh Y, 2014; Segal-Raz H et al., 2011; Zolner AE et al., 2011). This function of ATM may explain the moderate, variable sensitivity of ATM-deficient cells to a broad range of DNA damaging agents. Among them are UV radiation, alkylating agents, crosslinking agents, hydrogen peroxide, 4-Nitroquinoline 1-oxide, phorbol-12-myristate-13-acetate and topoisomerase I poisons (Yi M et al., 1990; Ward AJ et al., 1994; Hoar DI et al., 1976; Paterson MC et al., 1976; Smith PJ et al., 1980; Mirzayans R et al., 1989; Henderson EE et al., 1980; Scudiero DA, 1980; Jaspers NG et al., 1982; Teo IA et al., 1982; Barfknecht TR et al., 1982; Fedier A et al., 2003; Leonard JC et al., 2004; Lee JH et al., 2006; Zhang N et al., 1996; Smith PJ et al., 1989; Alagoz M et al., 2013; Katyal S et al., 2014; Speit G et al., 2000; Shiloh Y et al., 1985; Hannan MA et al., 2002).

ATM-deficient cells also exhibit reduced efficiency in resolving TOP1 (Topoisomerase I) -DNA covalent intermediates (Alagoz M et al., 2013; Katyal S et al., 2014).

This ongoing role of ATM is its routine function in the daily maintenance of genome stability, while its powerful role in the DSB response is reserved for when this harmful lesion interferes with the daily life of a cell. Thus, when ATM is missing, not only is there markedly reduced response to DSBs, the ongoing modulation of numerous pathways in response to occasional stresses becomes suboptimal. All of these lesions are part of the daily wear and tear on the genome that contributes to ageing.

An additional role for ATM in genome dynamics was proposed following evidence that ATM is involved in shaping the epigenome in neurons by regulating the localization of the histone deacetylase 4 (HDAC4 Li J et al., 2012; Herrup K et al., 2013; Herrup K, 2013), targeting the EZH2 component of the polycomb repressive complex 2 (Li J et al., 2013), and regulating the levels of 5-hydroxymethylcytosine in Purkinje cells (Jiang D et al., 2015).

Oxidative stress/Cellular homeostasis.

Cytoplasmic fraction of ATM. ATM's role in cellular homeostasis is further expanded by its cytoplasmic fraction. Specifically, cytoplasmic ATM was found to be associated with peroxisomes (Watters D et al., 1999; Tripathi DN et al., 2016; Zhang J et al., 2015) and mitochondria (Valentin-Vega YA et al., 2012). In view of the evidence of increased oxidative stress in ATM-deficient cells, it has long been suspected that ATM senses and responds to oxidative stress (Gatei M et al., 2001; Rotman G et al., 1997; Rotman G et al., 1997; Barzilai A et al., 2002; Watters DJ, 2003; Takao N et al., 2000; Alexander A et al., 2010). This conjecture was validated by work from the Paull lab (Guo Z et al., 2010a), which identified an MRN-independent mode of ATM activation, differentiating it from DSB-induced activation, stimulated by reactive oxygen species (ROS) and leading to ATM oxidation (Paull TT, 2015; Guo Z et al., 2010a; Guo Z et al., 2010b; Lee JH et al., 2014).

ATM was also found to be involved specifically in the protection against oxidative stress induced by oxidized low-density lipoprotein (Semlitsch M et al., 2011). It has thus assumed the role of a redox sensor (Ditch S et al., 2012; Tripathi DN et al., 2016; Kr+ACY-uuml;ger A et al., 2011). Recently, the first phospho-proteomic screen was carried out to identify substrates of ROS-activated ATM (Kozlov SV et al., 2016). An important arm of the ATM-mediated response to ROS extends to peroxisomes (Tripathi DN et al., 2016). Work from the Walker lab showed that ROS-mediated activation of peroxisomal ATM leads to ATM-mediated phosphorylation of LKB and subsequent activation of AMPK and TSC2, which dampens mTORC1-mediated signaling, eventually decreasing protein synthesis and enhancing autophagy (Alexander A et al., 2010; Tripathi DN et al., 2013; Zhang J et al., 2013; Alexander A et al., 2010; Alexander A et al., 2010).

Further work from this lab (Zhang J et al., 2015) showed that ATM also phosphorylates the peroxisomal protein PEX5, flagging it for ubiquitylation and subsequent binding to the autophagy adapter, SQSTM1 (p62), in the process of autophagy-associated peroxisome degradation (pexophagy) - a critical process in peroxisome homeostasis (Till A et al., 2012).

Mitochondrial fraction of ATM. Still another arm of the ATM-mediated response to oxidative stress operates in the mitochondrial fraction of ATM. ATM is thus emerging also as a regulator of mitochondrial homeostasis. Evidence is accumulating of its involvement in mitochondrial function, mitophagy, and the integrity of mitochondrial DNA (Valentin-Vega YA et al., 2012; Ambrose M et al., 2007; Eaton JS et al., 2007; Fu X et al., 2008; Valentín-Vega YA et al., 2012; D'Souza AD et al., 2013; Sharma NK et al., 2014) and further work is needed to identify its substrates in mitochondria and the mechanistic aspects of its action in this arena.

Links between ATM and the SASP (senescence-associated secretory phenotype). Several laboratories recently described direct links between ATM and the SASP - a cardinal feature of cell senescence. Work from the Gamble lab (Chen H et al., 2015) showed that the histone variant
macrophage 2A.1 is required for full transcriptional activation of SASP-promoting genes, driving a positive feedback loop that enhances cellular senescence. This response is countered by a negative feedback loop that involves ATM activation by endoplasmic reticulum stress, elevated ROS levels or DNA damage. ATM's activity is required for the removal of macrophage 2A.1 from sites of SASP genes, thus leading to SASP gene repression. The Elledge lab identified a major SASP activator - the transcription factor GATA4 ID, whose stabilization drives this process (Kang et al., 2015). Importantly, the activation of this pathway was dependent on both ATM and ATR, as was senescence-associated activation of TP53 and CDKN2A (p16INK4a). On the other hand, the Zhang lab (Aird et al., 2015) recently showed that when cell senescence is induced by replication stress (e.g., following nucleotide deficiency), ATM inactivation allows the cell to bypass senescence by shifting cellular metabolism: upon ATM loss, dNTP levels rise due to up-regulation of the pentose phosphate pathway, whose key regulator, glucose-6-phosphate dehydrogenase (G6PD) is under functional regulation by ATM (Aird et al., 2015; Cosentino et al., 2011).

Insulin response and lipoprotein metabolism. Other metabolic arenas in which ATM involvement is gaining attention are insulin response and lipoprotein metabolism, clinically represented by the metabolic syndrome. This role of ATM in cellular physiology was recently thoroughly and convincingly reviewed (Espach et al., 2015). Briefly, ATM was found to participate in several signaling pathways mediated by insulin (Yang et al., 2000; Miles et al., 2007; Vinuegra et al., 2005; Halaby et al., 2008; Jeong et al., 2010); and heterozygosity for ATM null allele in ApoE-deficient mice was found to aggravate their metabolic syndrome (Wu et al., 2005; Schneider et al., 2006; Mercer et al., 2010), an effect that was partly relieved by the mitochondria-targeted antioxidant MitQ (Mercer et al., 2012). **IGF-1 receptor.** Another pathway by which ATM may impact on cellular senescence is the dependence of IGF1R (IGF-1 receptor) expression on ATM (Peretz et al., 2000; Goetz et al., 2011; Ching et al., 2013); the mechanism remains to be elucidated, but ATM impacts on IGF-1-mediated pathways, including those that affect cellular senescence (Luo et al., 2014). **Beta-adrenergic receptor.** Another series of observations assigned ATM a protective role in cardiac myocyte apoptosis stimulated by +ACYP beta-adrenergic receptor and myocardial remodeling. Loss of ATM in mice induced myocardial fibrosis and myocyte hypertrophy and interfered with cardiac remodeling following myocardial infarction (Foster et al., 2011; Foster CR et al., 2012; Foster CR et al., 2013; Daniel et al., 2014). The mechanistic aspects of these effects are still unclear, but ATM's apparent involvement in myocardial homeostasis might be relevant to the observation of elevated arteriosclerosis in A-T carriers (Swift et al., 1983; Su Y et al., 2000).

Homology

Phosphatidylinositol 3-kinase (PI3K)-like proteins, most closely related to ATR and the DNA-PK catalytic subunit.

Mutations

The cellular phenotype of A-T represents genome instability, deficient DNA damage response (DDR), and elevated oxidative stress, in addition to a premature senescence component (Shiloh Y et al., 1982).

Germinat

Various types of mutations have been described, dispersed throughout the gene, and therefore most patients are compound heterozygotes; most mutations appear to inactivate the ATM protein by truncation, large deletions, or annulation of initiation or termination, although missense mutations have been described in the PI3 kinase domain and the leucine zipper motif. Patients with the severe form of A-T are homozygous or compound heterozygous for null ATM alleles. The corresponding mutations usually lead to truncation of the ATM protein and subsequently to its loss due to instability of the truncated derivatives; a smaller portion of the mutations create amino acid substitutions that abolish ATM's catalytic activity (Taylor et al., 2015; Gilad et al., 1996; Sandoval et al., 1999; Barone et al., 2009). Careful inspection of the neurological symptoms of A-T patients reveals variability in their age of onset and rate of progression among patients with different combinations of null ATM alleles (Taylor et al., 2015; Crawford et al., 2000; Alterman et al., 2007). Thus, despite the identical outcome in terms of ATM function, additional genes may affect the most cardinal symptom of A-T. Other, milder types of ATM mutations further extend this variability, and account for forms of the disease with extremely variable severity and age of onset of symptoms. The corresponding ATM genotypes are combinations of hypomorphic alleles or combinations of null and hypomorphic ones. Many of the latter are leaky splicing mutations and others are missense mutations, eventually yielding low amounts of active ATM (Taylor et al., 2015; Alterman et al., 2007; Soresina et al., 2008; Verhagen et al., 2009; Silvestri et al., 2010; Saunders-Pullman et al., 2012; Verhagen et al., 2012; Worth et al., 2013; Claes et al., 2013; M+ACY-eacutet;neret
Somatic

A variety of missense somatic, biallelic mutations were identified in hematologic malignancies, most notably mantle cell lymphoma and T-lymphoblastic leukemia. Missense mutations outside of the PI3 kinase and leucine zipper domains have been described among breast cancer patients, although these mutations have not been found in A-T patients. Whether these mutations contribute to breast cancer though not to ataxia-telangiectasia remains controversial.

Implicated in

Ataxia telangiectasia

Note

Ataxia telangiectasia is a prototype genome instability syndrome (Perlman SL et al., 2012; Lavin MF, 2008; Crawford TO, 1998; Chun HH et al., 2004; Taylor AM et al., 1982; Taylor AM et al., 2015; Taylor AM, 1978; Butterworth SV et al., 1986; Kennaugh AA et al., 1986).

Disease

Ataxia telangiectasia is a progressive cerebellar degenerative disease with telangiectasia, immunodeficiency, premature aging, cancer risk, radiosensitivity, and chromosomal instability.

Prognosis

Prognosis is poor: median age at death: 17 years; survival rarely exceeds 30 years, though survival is increasing with improved medical care.

Cytogenetics

Spontaneous chromatid/chromosome breaks; non-clonal stable chromosome rearrangements involving immunoglobulin superfamily genes e.g. inv(7)(p14q35); clonal rearrangements.

References

Atlas Genet Cytogenet Oncol Haematol. 2017; 21(7)

Shiloh Y

Chun HH, Gatti RA. Ataxia-telangiectasia, an evolving phenotype DNA Repair (Amst) 2004 Aug-Sep;3(8-9):1187-96

Taylor AM, Lam Z, Last JI, Byrd PJ. Ataxia telangiectasia: more variation at clinical and cellular levels Clin Genet 2015 Mar;87(3):195-208

Guleria A, Chanda S. ATM kinase: Much more than a DNA damage responsive protein DNA Repair (Amst) 2016 Mar;39:1-20

BODER E, SEDGWICK RP. Ataxia-telangiectasia; a familial syndrome of progressive cerebellar ataxia, oculocutaneous telangiectasia and frequent pulmonary infection Pediatrics 1958 Apr;21(4):526-54

Vinters HV, Gatti RA, Rakic P. Sequence of cellular events in cerebellar ontogeny relevant to expression of neuronal abnormalities in ataxia-telangiectasia Kroc Found Ser 1985;19:233-55

Weaver M, Gatti RA. Lymphocyte subpopulations in ataxia-telangiectasia Kroc Found Ser 1985;19:309-14

Voss S, Pietzner J, Hoche F, Taylor AM, Last JI, Schubert R, Zielen S. Growth retardation and growth hormone

Atlas Genet Cytogenet Oncol Haematol. 2017; 21(7) 242
deficiency in patients with Ataxia telangiectasia Growth Factors 2014 Jun;32(3-4):123-9

Vaziri H. Critical telomere shortening regulated by the ataxia-telangiectasia gene acts as a DNA damage signal leading to activation of p35 protein and limited life-span of human diploid fibroblasts. A review. Biochemistry (Mosc)

Kamslser A, Daily D, Hochman A, Stern N, Shiloh Y, Rotman G, Barzilai A. Increased oxidative stress in ataxia telangiectasia evidenced by alterations in redox state of...
ATM (ataxia telangiectasia mutated)

Shiloh Y

brains from ATM-deficient mice Cancer Res 2001 Mar 1;61(5):1849-54

Reliene R, Fischer E, Schiestl RH. Effect of N-acetyl cysteine on oxidative DNA damage and the frequency of DNA deletions in atm-deficient mice Cancer Res 2004 Aug 1;64(15):5148-53

Reliene R, Schiestl RH. Antioxidants suppress lymphoma and increase longevity in Atm-deficient mice J Nutr 2007 Jan;137(1 Suppl):2285-2325

McDonald CJ, Ostini L, Wallace DF, John AN, Watters DJ, Subramaniam VN. Iron loading and oxidative stress in the Atm-/- mouse liver Am J Physiol Gastrointest Liver Physiol 2011 Apr;300(4):G554-60

Carney EF, Srivivasan V, Moss PA, Taylor AM. Classical ataxia telangiectasia patients have a congenitally aged immune system with high expression of CD95 J Immunol 2012 Jul 1;189(1):261-8

McGrath-Morrow SA, Collaco JM, Detrick B, Lederman HM. Serum Interleukin-6 Levels and Pulmonary Function in Ataxia-Telangiectasia J Pediatr 2016 Apr;171:256-61

Xia SJ, Shamas MA, Shmoolker Reis RJ. Reduced telomere length in ataxia-telangiectasia fibroblasts Mutat Res 1996 Sep 2;364(1):1-11

Doksani Y, de Lange T. The role of double-strand break repair pathways at functional and dysfunctional telomeres Cold Spring Harb Perspect Biol 2014 Sep 16;6(12):a016576

Silvestri G, Masciullo M, Piane M, Savio C, Modoni A, Santoro M, Chessa L. Homozygosity for c.625T+ACY-gt;G transition in the ATM gene causes an atypical, late-onset

Worth PF, Srinivasan V, Smith A, Last JI, Wootton LL, Biggs PM, Davies NP, Carney EF, Byrd PJ, Taylor AM. Very mild presentation in adult with classical cellular phenotype of ataxia telangiectasia Mov Disord 2013 Apr;28(4):524-8

Cremona CA, Behrens A. ATM signalling and cancer Oncogene 2014 Jun 25;33(26):3351-60

Lovejoy CA, Cortez D. Common mechanisms of PIKK regulation DNA Repair (Amst) 2009 Sep;8(2):9;1004-8

Baret+ACY-eacute; d; Williams RL. PIKKs—the solenoid nest where partners and kinases meet Curr Opin Struct Biol 2014 Dec;29:134-42

Alayav A, Holz MK. mTOR signaling for biological control and cancer J Cell Physiol 2013 Aug;228(8):1658-64

Cornu M, Albert V, Hall MN. mTOR in aging, metabolism, and cancer Curr Opin Genet Dev 2013 Feb;23(1):53-62

Davis AJ, Chen BP, Chen DJ. DNA-PK: a dynamic enzyme in a versatile DSB repair pathway DNA Repair (Amst) 2014 May;17:21-9

Yamashita A. Role of SMG-1-mediated Upf1 phosphorylation in mammalian nonsense-mediated mRNA decay Genes Cells 2013 Mar;18(3):161-75

Mar+ACY-eacute;ucte;e;a; A, Zou L. DNA damage sensing by the ATM and ATR kinases Cold Spring Harb Perspect Biol 2013 Sep 1;5(9)

Sirbu BM, Cortez D. DNA damage response: three levels of DNA repair regulation Cold Spring Harb Perspect Biol 2013 Aug 1;5(8);a012724

Gobbini E, Cesena D, Galbiati A, Lockhart A, Longhese MP. Interplays between ATM/Te1 and ATR/Mec1 in sensing and signaling DNA double-strand breaks DNA Repair (Amst) 2013 Oct;12(10):791-9

Chen BP, Li M, Asaithamby A. New insights into the roles of ATM and DNA-PKcs in the cellular response to oxidative stress Cancer Lett 2012 Dec 31;327(1-2):103-10

McKinnon PJ. ATM. and the molecular pathogenesis of ataxia telangiectasia Annu Rev Pathol 2012;7:303-21

Borde V, de Massy B. Programmed induction of DNA double strand breaks during meiosis: setting up communication between DNA and the chromosome structure Curr Opin Genet Dev 2013 Apr;23(2):147-55

All FW, Zhang Y, Meng FL, Guo C, Schwer B. Mechanisms of programmed DNA lesions and genomic instability in the immune system Cell 2013 Jan 31;152(3):417-29

Jasim M, Rothstein R. Repair of strand breaks by homologous recombination Cold Spring Harb Perspect Biol 2013 Nov 1;5(11);a012740

Radhakrishnan SK, Jette N, Lees-Miller SP. Non-homologous end joining: emerging themes and unanswered questions DNA Repair (Amst) 2014 May;17:2-8

Polo SE, Jackson SP. Dynamics of DNA damage response proteins at DNA breaks: a focus on protein modifications Genes Dev 2011 Mar 1;25(5):409-33

Bakkenist CJ, Kastan MB. DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation Nature 2003 Jan 30;421(6922):499-506

Kaidi A, Jackson SP. KATS tyrosine phosphorylation couples chromatin sensing to ATM signalling Nature 2013 Jun 6;498(7452):70-4

Khoronenkova SV, Dianov GL. ATM prevents DSB formation by coordinating SSB repair and cell cycle progression Proc Natl Acad Sci U S A 2015 Mar 31;112(13):3997-4002

Wallace SS. Base excision repair: a critical player in many games DNA Repair (Amst) 2014 Jul;19:14-26

Bauer NC, Corbett AH, Doetsch PW. The current state of eukaryotic DNA base damage and repair Nucleic Acids Res 2015 Dec 2;43(21):10083-101

Hoar DJ, Sargent P. Chemical mutagen hypersensitivity in ataxia telangiectasia Nature 1976 Jun 17;261(5561):590-2

Jaspers NG, de Wit J, Regulski MR, Bootma D. Abnormal regulation of DNA replication and increased lethality in ataxia telangiectasia cells exposed to carcinogenic agents Cancer Res 1982 Jan;42(1):335-41

Teo IA, Arlett CF. The response of a variety of human fibroblast cell strains to the lethal effects of alkylating agents Carcinogenesis 1982;3(1):33-7

Barfknecht TR, Little JB. Hypersensitivity of ataxia telangiectasia skin fibroblasts to DNA alkylating agents Mutat Res 1982 Jun;94(2):369-82

Shiloh Y, Tabor E, Becker Y. Cells from patients with ataxia telangiectasia are abnormally sensitive to the cytotoxic effect of a tumor promoter, phenbol-12-myristate-13-acetate Mutat Res 1985 Apr;149(2):285-6

Herrup K, Li J, Chen J. The role of ATM and DNA damage in neurons: upstream and downstream connections DNA Repair (Amst) 2013 Aug;12(8):600-4

Herrup K. ATM and the epigenetics of the neuronal genome Mech Ageing Dev 2013 Oct;134(10):434-9

Rotman G, Shiloh Y. The ATM gene and protein: possible roles in genome surveillance, checkpoint controls and cellular defence against oxidative stress Cancer Surv 1997;29:285-304

Guo Z, Kozlov S, Lavin MF, Person MD, Paull TT. ATM activation by oxidative stress Science 2010 Oct 22;330(6003):517-21

Semlitsch M, Shackelford RE, Zirkl S, Sattler W, Malle E. ATM protects against oxidative stress induced by oxidized low-density lipoprotein DNA Repair (Amst) 2011 Aug 15;10(8):848-60

Kr+ACY-uuml;ger A, Ralser M. ATM is a redox sensor linking genome stability and carbon metabolism Sci Signal 2011 Apr 5;4(167):pe17

Alexander A, Kim J, Walker CL. ATM engages the TSC2/mTORC1 signaling node to regulate autophagy Autophagy 2010 Jul;6(5):872-3

Alexander A, Walker CL. Differential localization of ATM is correlated with activation of distinct downstream signaling pathways Cell Cycle 2010 Sep 15;9(18):3685-6

Ambrose M, Goldstine JV, Gatti RA. Intrinsic mitochondrial dysfunction in ATM-deficient lymphoblastoid cells Hum Mol Genet 2007 Sep 15;16(18):2154-64

Eaton JS, Lin ZP, Sartorelli AC, Bonawitz ND, Shadel GS. Ataxia-telangiectasia mutated kinase regulates ribonucleotide reductase and mitochondrial homeostasis J Clin Invest 2007 Sep;117(9):2723-34

Valentin-Vega YA, Kastan MB. A new role for ATM: regulating mitochondrial function and mitophagy Autophagy 2012 May 1;8(5):840-1

D’Souza AD, Parish IA, Krause DS, Kaech SM, Shadel GS. Reducing mitochondrial ROS improves disease-related
pathology in a mouse model of ataxia-telangiectasia Mol Ther 2013 Jan;21(1):42-8

Sharma NK, Lebedeva M, Thomas T, Kovalenko OA, Stumpf JD, Shadel GS, Santos JH. Intrinsic mitochondrial DNA repair defects in Ataxia Telangiectasia DNA Repair (Amst) 2014 Jan;13:22-31

Miles PD, Treuner K, Latronica M, Olefsky JM, Barlow C. Impaired insulin secretion in a mouse model of ataxia telangiectasia Am J Physiol Endocrinol Metab 2007 Jul;293(1):E70-4

Goetz EM, Shankar B, Zou Y, et al. ATM-dependent IGF-1 induction regulates secretory clusterin expression after DNA damage and in genetic instability Oncogene 2011 Sep 1;30(35):3745-54

Foster CR, Singh M, Subramanian V, Singh K. Ataxia telangiectasia mutated kinase plays a protective role in +ACY-beta; adrenergic receptor-stimulated cardiac myocyte apoptosis and myocardial remodeling Mol Cell Biochem 2011 Jul;353(1-2):13-22

Daniel LL, Daniels CR, Harirforoosh S, Foster CR, Singh M, Singh K. Deficiency of ataxia telangiectasia mutated kinase delays inflammatory response in the heart following myocardial infarction J Am Heart Assoc 2014 Dec;3(6):e001286

Swift M, Chase C. Cancer and cardiac deaths in obligatory ataxia-telangiectasia heterozygotes Lancet 1983 May 7;1(8332):1049-50

This article should be referenced as such: