t(2;11)(p21;q23) KMT2A/?

Jean-Loup Huret

Medical Genetics, Dept Medical Information, University of Poitiers, CHU Poitiers Hospital, F-86021 Poitiers, France. jean-loup.huret@chu-poitiers.fr

Published in Atlas Database: August 2016
Online updated version : http://AtlasGeneticsOncology.org/Anomalies/t0211ID1109.html
Printable original version : http://documents.irevues.inist.fr/bitstream/handle/2042/66248/08-2016-t0211ID1109.pdf
DOI: 10.4267/2042/66248

This article is an update of :
Fleischman EW. t(2;11)(p21;q23). Atlas Genet Cytogenet Oncol Haematol 2000;4(1)

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 2.0 France Licence.
© 2017 Atlas of Genetics and Cytogenetics in Oncology and Haematology

Abstract
Review on t(2;11)(p21;q23) with MLL (KMT2A) involvement, with data on clinics, and the genes involved.

Keywords
Chromosome 2; chromosome 11; MLL; KMT2A; acute myeloid leukemia; acute lymphoblastic leukemia

Clinics and pathology

Disease
Myelodysplastic syndromes: (MDS), acute myeloid leukemia: (AML) and acute lymphoblastic leukemia (ALL).

Phenotype/cell stem origin
Although at least 43 cases of t(2;11)(p21;q23) have been described in hematological malignancies (19 MDS, 21 AML, 2 acute lymphocytic leukemia (ALL) and 1 chronic lymphocytic leukemia: (CLL) (Mitelman et al., 2016)., The implication of MLL was ascertained in only 5 cases (Thirman et al., 1993; Finke et al., 1994; Fleischman et al., 1999; Kim et al., 2002; Meyer et al., 2006), a case with a hidden involvement of AFF3 (2q11) being discarded (Hiwatari et al., 2003), while thirty two case of t(2;11)(p21;q23) without MLL rearrangement are available (review in Ruano and Shetty, 2016). There were a case of refractory anemia with excess of blasts: (RAEB) evolving towards an AML, a M0-AML: evolving towards a M4-AML, a M5a-AML, and two ALLs.

![Image of chromosome bands]

(t(2;11)(p21;q23) G- banding (left) - Courtesy Eric Crawford, and R- banding (Editor)
Epidemiology

Sex ration was 3M/1F. Patients were aged 8 months, 58, 58, and 61 years (Thirman et al., 1993; Finke et al., 1994; Fleischman et al., 1999; Kim et al., 2002).

Clinics

variable

Cytogenetics

Additional anomalies

The t(2;11)(p21;q23) was the sole abnormality in 3 cases, and was accompanied with , del(5q) in one case. It is of note that deletions of 5q usually are not seen in cases with MLL-associated translocations.

Genes involved and proteins

Note

the gene involved in 2p in unknown

KMT2A *(myeloid/lymphoid or mixed lineage leukemia)*

Location

11q23.3

DNA/RNA

37 exons, spanning about 120 kb; 13-15 mRNA

Protein

3969 amino acids, 431 kDa; Transcriptional regulatory factor. MLL is known to be associated with more than 30 proteins, including the core components of the SWI/SNF chromatin remodeling complex and the transcription complex TFIIID. MLL binds promoters of HOX genes through acetylation and methylation of histones. MLL is a major regulator of hematopoiesis and embryonic development, through regulation of HOX genes expression regulation (HOXA9 in particular).

Result of the chromosomal anomaly

Hybrid gene

Description

unknown

Fusion protein

Description

unknown

References

Mitelman F, Johansson B and Mertens F (Eds.). Mitelman Database of Chromosome aberrations and Gene fusions in Cancer (2016).

Ruano, AL, Shetty, S. t(2;11)(p21;q23) without KMT2A (MLL) rearrangement Atlas Genet Cytogenet Oncol Haematol http://atlasgeneticsoncology.org/Anomalies/t0211p21q23I D1333.html

This article should be referenced as such: