KLK14 (kallikrein-related peptidase 14)

Christos K. Kontos, Andreas Scorilas

Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, Greece / ascorilas@biol.uoa.gr

Published in Atlas Database: September 2016
Printable original version: http://documents.irevues.inist.fr/bitstream/handle/2042/68232/09-2016-KLK14ID41080ch19q13.pdf
DOI: 10.4267/2042/68232

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 2.0 France Licence. © 2016 Atlas of Genetics and Cytogenetics in Oncology and Haematology

Abstract

Review on KLK14, with data on DNA, on the protein encoded, and where the gene is implicated.

Keywords
Kallikreins; KLK14; Prostate cancer; Breast cancer; Gastric cancer; Non-small cell lung cancer;

Identity

Other names: KLK-L6
HGNC (Hugo): KLK14
Location: 19q13.41
Local order: Telomere to centromere.

Description

The KLK14 gene has a total length of 6,700 nt and consists of 8 exons and 7 intervening introns. The organization of the KLK14 gene is similar to that of the other KLK family members (Hooper et al., 2001; Yousef et al., 2001).

Transcription

The KLK14 gene is subjected to alternative splicing, generating two splice variants, which encode the same protein (Kurlender et al., 2005). These two splice variants differ only in their 3'-untranslated region (3'-UTR).

Figure 1. Schematic representation of the KLK14 gene. Exons are shown as boxes and introns as connecting lines. The coding sequences are highlighted as red, while 5' and 3' untranslated regions (UTRs) are shown in white. Numbers inside or outside boxes indicate lengths (nt) of exons and introns, respectively, while numbers in parentheses indicate lengths (aa) of protein isoforms. Arrows show the position of the start codons (ATG) and asterisks (*) denote the position of the stop codons (TAA or TGA). Roman numerals indicate intron phases. The intron phase refers to the location of the intron within the codon; I denotes that the intron occurs after the first nucleotide of the codon, II denotes that the intron occurs after the second nucleotide, and 0 means that the intron occurs between distinct codons. The figure is drawn to scale, except for the introns containing the (//) symbol.
KLK14 (kallikrein-related peptidase 14)

Kontos CK, Scorilas A

Atlas Genet Cytogenet Oncol Haematol. 2017; 21(4)

135

Figure 2. Alignment of amino acid sequences of the precursors of the KLK14 protein isoforms. The three amino acid residues (positions: 83, 127, and 220) constituting the catalytic triad that is required for protease activity are shown in red. The N-terminal signal peptide (positions 1-34) is shown in light blue.

One more splice variant is predicted to be encoded by the KLK14 gene, based on automatic sequence analysis of expressed sequence tags (ESTs). This splice variant uses the same start codon, but uses an alternate splice sites in the 3’ coding region, in comparison with the aforementioned variants, generating a protein with a distinct C-terminus compared to the classical isoform precursor.

Pseudogene
Not identified so far.

Protein

Description
The classical KLK14 isoform (isoform 1) precursor consists of 267 amino acid residues and has a molecular mass of 29.1 kDa. The N-terminal signal peptide comprises 34 amino acid residues. KLK14 is a secreted serine protease having dual activity, trypsin- and chymotrypsin-like, with a preference for cleavage after arginine residues (Felber et al., 2005; Rajapaksei and Takahashi, 2007). KLK14 protein is synthesized as inactive precursorzymogen that is cleaved at the position 41 during limited proteolysis to generate its active form (Borgono et al., 2007). Three amino acid residues (positions: 83, 127, and 220) constitute the catalytic triad that is required for protease activity.

Expression
KLK14 mRNA is primarily expressed in the prostate, salivary gland, stomach, lung, spleen, uterus, thymus, liver, small intestine, and cerebellum while lower levels of expression are found in many other tissues. KLK14 mRNA expression is downregulated in malignant breast, testicular, prostatic, and ovarian tumors (Yousef et al., 2001).

Function
Several human protein substrates for KLK14 have already been identified, including major components of the extracellular matrix such as collagens I-IV, fibronectin, laminin, kininogen, fibrinogen, plasminogen (PLG), vitronectin (VTN), and insulin-like growth factor-binding proteins 2 and 3 (IGFBP2 and IGFBP3) (Borgono et al., 2007; Felber et al., 2005). Thus, this secreted cancer-related peptidase may be involved in several facets of tumor progression, including growth, invasion, and angiogenesis, as well as in arthritic disease via deterioration of cartilage (Borgono et al., 2007). Additionally, KLK14 is implicated in other physiological functions too, such as desquamation and activation of signaling molecules associated with inflammation and cancer (de Veer et al., 2012). In fact, this enzyme may be responsible for as much as 50% of the total trypsin-like activity in stratum corneum, thus suggesting an important role for this very efficient protease under normal and disease conditions in the skin (Stefansson et al., 2006). KLK14 can also directly cleave semenogelins I and II (SEMG1 and SEMG2), thus playing a major role in seminal clot liquefaction (Emami et al., 2008). In addition, active KLK14 is efficiently able to cleave C3, the point of convergence of the complement cascade, indicating a potential modulation of C3-mediated functions. Thus, it participates in the activation of the innate immune response (Oikonomopoulou et al., 2013). Members of the proteinase-activated receptor (PAR) family constitute also targets of KLK14; their activation upon cleavage by KLK14 leads to differential signaling and affects tissue function (Ramachandran et al., 2012). For instance, KLK14 acts on proteinase-activated receptor 2 (F2RL1 or
Moreover, KLK14 levels were elevated in 40% of patients with malignant breast tumors in comparison with normal breast tissues and benign breast tumors (Fritzsche et al., 2006; Papachristopoulou et al., 2011).

Prognosis
KLK14 mRNA overexpression was associated with high tumor grade and tumor volume, as well as with negative estrogen receptor (ER) status (Papachristopoulou et al., 2011). Accordingly, cytoplasmic KLK14 protein expression was significantly higher in invasive breast carcinomas than in normal breast tissue specimens. Moreover, KLK14 protein overexpression was associated with high histological grade and positive nodal status. However, it failed to predict patient outcome (Fritzsche et al., 2006). Additionally, serum KLK14 levels were elevated in 40% of patients with breast cancer (Borgono et al., 2003). Thus, KLK14 constitutes a potential diagnostic biomarker in breast cancer, while its prognostic utility is questionable. Moreover, KLK14 mRNA expression has been suggested as a biomarker for prediction of breast cancer patients’ response to chemotherapy (Papachristopoulou et al., 2013).

Ovarian cancer
KLK14 is considered to be involved in the malignant behavior of ovarian cancer cells (Zhang et al., 2012). KLK14 protein levels were higher in 40% of ovarian cancer tissues, as compared to normal ovarian tissues. Moreover, serum KLK14 levels were elevated in 65% of patients with ovarian cancer (Borgono et al., 2003). Thus, KLK14 constitutes a potential biomarker in ovarian cancer and a therapeutic target, as well (Borgono et al., 2003; Zhang et al., 2012).

Salivary gland cancer
Both pleomorphic adenoma and adenoid cystic carcinoma of the salivary glands showed elevated KLK14 expression than normal glands and mucoepidermoid carcinoma tissues. These observed differences in KLK14 protein levels imply that KLKs may aid in the differential diagnosis of salivary gland tumors. KLK14 is considered as a promising novel biomarker for salivary gland tumors (Hashem et al., 2010).

Chronic lymphocytic leukemia
KLK14 mRNA overexpression is able to successfully distinguish patients with chronic lymphocytic leukemia (CLL) from non-leukemic population.

Prognosis
Furthermore, although not clearly associated to clinical staging or other prognostic factors including
IGHV mutational status and CD38 expression, high KLK14 mRNA expression predicts poor overall survival of B-CLL patients. The unfavorable prognostic value of KLK14 mRNA positivity in peripheral blood mononuclear cells of B-CLL patients was shown to be independent of established prognostic factors of this hematological malignancy. As a result, KLK14 mRNA expression has been suggested as a prognostic biomarker of overall survival of B-CLL patients (Kontos et al., 2016).

References

Emami N, Diamandis EP. Human kallikrein-related peptidease 14 (KLK14) is a new activator component of the KLK proteolytic cascade. Possible function in seminal plasma and skin. J Biol Chem. 2008 Feb 8;283(6):3031-41

Lose F, Lawrence MG, Srinivasan S, et al. The kallikrein 14 gene is down-regulated by androgen receptor signalling and harbours genetic variation that is associated with prostate tumour aggressiveness. Biol Chem. 2012 Apr;393(5):403-12

Reid JC, Bennett NC, Stephens CR, Carroll ML, Magdolen V, Clements JA, Hooper JD. In vitro evidence that KLK14 regulates the components of the HGF/Met axis, pro-HGF and HGF-activator inhibitor 1A and 1B. Biol Chem. 2016 Dec 1;397(12):1299-1305

This article should be referenced as such: