IRS2 (insulin receptor substrate 2)

João Agostinho Machado-Neto, Paula de Melo Campos, Fabiola Traina

Department of Internal Medicine, University of São Paulo at Ribeirão Preto Medical School, Ribeirão Preto, São Paulo, (JAMN, FT), Hematology and Hemotherapy Center, University of Campinas - UNICAMP, Instituto Nacional de Ciência e Tecnologia do Sangue, Campinas, São Paulo, (PdMC) Brazil. jamachadoneto@gmail.com, pmcampos@gmail.com, ftraina@fmrp.usp.br

Published in Atlas Database: May 2016
Online updated version : http://AtlasGeneticsOncology.org/Genes/IRS2ID40994ch13q34.html
Printable original version : http://documents.irevues.inist.fr/bitstream/handle/2042/68156/05-2016-IRS2ID40994ch13q34.pdf
DOI: 10.4267/2042/68156
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 2.0 France Licence. © 2016 Atlas of Genetics and Cytogenetics in Oncology and Haematology

Abstract

Insulin receptor substrate 2 (IRS2) belongs to the insulin receptor substrate protein family and was initially discovered as an alternative route for signaling mediated by the insulin receptor. Currently, IRS2 has been well-established to mediate mitogenic and antiapoptotic signaling from several important cellular receptors. In the last years, many studies have indicated that IRS2 participates in the regulation of important biological processes involved in cancer phenotype, including cell proliferation, clonogenicity, metabolism and survival. The present review contains data on IRS2 DNA/RNA, protein encoded and function.

Keywords: IRS2; mitogenic signaling; antiapoptotic signaling

Identity

Other names: IRS-2, 4PS
HGNC (Hugo): IRS2
Location : 13q34

DNA/RNA

Description

IRS2 was discovered as an alternative route from signaling mediated by the insulin receptor in Irs1 knockout mice (Patti, et al. 1995). The entire IRS2 gene is approximately 33.8 Kb (start: 109752698 and end: 109786568 bp; orientation: Minus strand) and contains 2 exons. The IRS2 cDNA contains 7 Kb.

Protein

Description

IRS2 belongs to the insulin receptor substrate (IRS) protein family, which is characterized by the presence of a pleckstrin homology (PH) domain and a phosphotyrosine binding (PTB) domain (Figure 1) in their protein structure. The PH domain contributes to protein-protein binding and facilitates the recruitment of IRS proteins by cell membrane receptors.

Figure 1. Schematic structure of IRS2. The pleckstrin homology (PH) domain (purple), phosphotyrosine binding (PTB) domain (green) and kinase regulatory loop binding domain (KRLB) are illustrated in the Figure. Amino acid (aa) positions are indicated.
The PTB domain contains multiple tyrosine sites for phosphorylation and is activated by cell receptors. Differently to other IRS family members, IRS2 has a kinase regulatory loop binding domain (KRLB) that contributes to the recruitment to cellular receptor (Mardilovich, et al. 2009a).

**Expression**

Ubiquitous.

**Localisation**

IRS2 protein is predominantly found in the cytoplasm (Figure 2).

**Function**


IRS2 also activates signaling pathways through other mechanisms (non-canonical pathways). For instance, angiotensin II stimulates the rapid phosphorylation of JAK2 tyrosine residues, increasing its catalytic activity and JAK2 - IRS2 association (Folli, et al. 1997; Saad, et al. 1996; Saad, et al. 1995).

The IRS2 - JAK2 association has also been described in rat left ventricular cells after stimulation with angiotensin (Velloso, et al. 2006; Velloso, et al. 1996), and in rat liver after stimulation with leptin (Carvalheira, et al. 2003). Similarly, the mutant form of JAK2 (JAK2V617F), which is constitutively activated, leads to enhanced interaction between JAK2 and IRS2 in myeloid cells (de Melo Campos, et al. 2016). The main signaling pathways stimulated by IRS2 are shown in Figure 3.

**Homology**

The N-terminus of IRS2 shares high homology with that of the other members of the IRS protein family. IRS2 also has a high homology among different species (Table 1).

**Mutations**

Recurrent mutations in the IRS2 gene are rare, and 88 substitution missense, 2 substitution nonsense, 38 substitution synonymous, 1 insertion inframe, 3 insertion frameshift, 4 deletions inframe and 3 deletion frameshift mutations are reported in COSMIC (Catalogue of somatic mutations in cancer; http://cancer.sanger.ac.uk/cancergenome/projects/cosmic).
Figure 3. IRS2 signaling pathway. IRS2 is recruited by its PH/PTB domains and phosphorylated in tyrosine residues by upstream tyrosine kinase receptors (e.g. insulin receptor [IR], insulin-like growth factor receptor [IGF1R]). Tyrosine phosphorylation of IRS2 triggers PI3K/AKT/mTOR and MAPK signaling activation (canonical pathway), regulating many biological processes, including cell proliferation, protein synthesis, survival and gene expression in specific human tissues. IRS2 is also activated by cytokine and hormone receptors (e.g. IL4, leptin, angiotensin), which additionally induce JAK2 stimulation and IRS2/JAK2 interaction, leading to STAT, PI3K/AKT/mTOR and MAPK signaling activation in rat and mouse tissues. Abbreviations: P, phosphorylation; PY, tyrosine phosphorylation. Figure was produced using Servier Medical Art (http://www.servier.com/Powerpoint-image-bank).

<table>
<thead>
<tr>
<th>% Identity for:</th>
<th>Symbol</th>
<th>Protein</th>
<th>DNA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homo sapiens</td>
<td>IRS2</td>
<td>96.9</td>
<td>97.7</td>
</tr>
<tr>
<td>vs. P. troglodytes</td>
<td>IRS2</td>
<td>97.4</td>
<td>95.9</td>
</tr>
<tr>
<td>vs. M. mulatta</td>
<td>IRS2</td>
<td>88.8</td>
<td>87.4</td>
</tr>
<tr>
<td>vs. C. lupus</td>
<td>IRS2</td>
<td>85.0</td>
<td>84.8</td>
</tr>
<tr>
<td>vs. B. taurus</td>
<td>IRS2</td>
<td>84.7</td>
<td>80.8</td>
</tr>
<tr>
<td>vs. M. musculus</td>
<td>Irs2</td>
<td>85.7</td>
<td>81.5</td>
</tr>
<tr>
<td>vs. R. norvegicus</td>
<td>Irs2</td>
<td>73.7</td>
<td>74.4</td>
</tr>
<tr>
<td>vs. G. gallus</td>
<td>IRS2</td>
<td>59.4</td>
<td>57.1</td>
</tr>
<tr>
<td>vs. X. tropicalis</td>
<td>LOC100498409</td>
<td>60.7</td>
<td>61.7</td>
</tr>
<tr>
<td>vs. D. rerio</td>
<td>zgc:56306</td>
<td>58.9</td>
<td>56.5</td>
</tr>
</tbody>
</table>

Table 1. Comparative identity of human IRS2 with other species (Source: http://www.ncbi.nlm.nih.gov/homologene)

Implicated in Breast cancer

Jackson and colleagues (Jackson, et al. 1998) observed that IRS2 is widely expressed in breast cancer cell lines and primary breast cancer cells. In breast cancer patients, membrane localization of IRS-2 was associated with reduced overall survival by multivariate analysis (Clark, et al. 2011). In breast cancer cell lines, high IRS2 expression was correlated with high breast tumor invasiveness (Porter, et al. 2013), and with increased survival and cell invasion under hypoxia conditions (Mardilovich, et al. 2009b). Breast cancer IRS2-depleted cells, using specific anti-sense constructs, presented reduced IGF1-mediated cell motility and lower anchorage independent growth (Jackson, et al. 2001). In agreement, others studies demonstrated that IRS2 activation was required for IGF1-induced cell motility of the human breast cell lines MCF-7 (Ibrahim, et al. 2008; Zhang, et al. 2004) and T47D-YA(Byron, et al. 2006). Nagle and colleagues (Nagle, et al. 2004), showed that mammary tumor cells from IRS2 knockout mice were less invasive and presented more prominent apoptotic response to growth factor deprivation compared to wild type mammary tumor cells. Using breast cancer cell lines, Morelli and colleagues (Morelli, et al. 2003) and Cui and colleagues (Cui, et al. 2003) also observed that IRS2 could be a target of estrogen and progesterone receptors, respectively. Cui and colleagues (Cui, et al. 2006) demonstrated that EGF signaling was also involved in IRS2 induction/activation at the mRNA and protein levels via c-JUN/AP-1 stimulation, establishing cross-talk between IGF1R and EGFR signaling. Furthermore, the authors demonstrated in
their study that IRS2 silencing reduced EGF-induced invasion and migration in the mammary adenocarcinoma cell line MDA-MB-468 (Cui, et al. 2006). Using the nontumorigenic mammary epithelial cell line MCF-10A and transgenic mice overexpressing human IRS2 by MMTV promoter, Death and colleagues (Dearth, et al. 2006) demonstrated the potential of malignant transformation of mammary cells by in vitro and in vivo IRS2 overexpression. Wu and colleagues (Wu, et al. 2010) observed that IRS2 silencing impaired breast cancer cell proliferation. In addition, they described that IGF1 induced nuclear translocation of IRS2 and NFκB, and promoted intranuclear association between IRS2 and NFκB in MCF-7 and BT-20 breast cancer cells, establishing a cross-talk between IGF1R and NFκB signaling. Slattery and colleagues (Slattery, et al. 2007), using a cohort of 1664 patients with breast cancer (1089 non-Hispanic white and 575 Hispanic) and 2054 controls (1328 non-Hispanic white and 726 Hispanic), found no association between IRS2 G1057D (rs1805097) polymorphism and breast cancer development. In contrast, Feigelson and colleagues (Feigelson, et al. 2008) observed an association between IRS2 polymorphisms rs4773082 (640 patients and 650 controls), rs2289046 (552 patients and 589 controls) and rs754204 (642 patients and 655 controls) and breast cancer development.

**Colorectal cancer**

Slattery and colleagues (Slattery, et al. 2004), using a cohort of 1001 patients with colon cancer and 1167 controls, and 766 patients with rectal cancer and 983 controls, reported that IRS2 G1057D (rs1805097) heterozygote GD genotype significantly reduced the risk of colon, though not rectal, cancer. In contrast, Yukseloglu and colleagues (Yukseloglu, et al. 2014), observed no association between IRS2 and NFκB signaling. Slattery and colleagues (Slattery, et al. 2007), using a cohort of 1664 patients with breast cancer (1089 non-Hispanic white and 575 Hispanic) and 2054 controls (1328 non-Hispanic white and 726 Hispanic), found no association between IRS2 G1057D (rs1805097) polymorphism and breast cancer development. In contrast, Feigelson and colleagues (Feigelson, et al. 2008) observed an association between IRS2 polymorphisms rs4773082 (640 patients and 650 controls), rs2289046 (552 patients and 589 controls) and rs754204 (642 patients and 655 controls) and breast cancer development.

**Hepatocellular carcinoma**

Boissan and colleagues (Boissan, et al. 2005) reported an overexpression of IRS2 in murine models of hepatocarcinogenesis. IRS2 mRNA and protein were found to be overexpressed in human hepatoma cell lines and primary human hepatocellular carcinoma specimens (Boisson, et al. 2005; Cantarini, et al. 2006). Of note, inhibition of IRS2 by siRNA resulted in increased apoptosis in the hepatocellular carcinoma Hep3B cells. In the human hepatoma SMMC-7721 cell line, IRS2 silencing suppressed aflatoxin B1-induced PI3K/AKT and MAPK activation and cell migration (Ma, et al. 2012). Rashad and colleagues (Rashad, et al. 2014) observed, in 334 patients and 426 controls, that the D allele and the DD genotype of IRS2 G1057D (rs1805097) polymorphism were significantly associated with hepatocellular carcinoma risk.

**Hematological malignancies**

IRS2 expression was found to be downregulated in myelodysplastic syndrome patients compared with healthy donors (Machado-Neto, et al. 2012).
Increased IRS2 expression and phosphorylation was observed during erythroid, granulocytic and megakaryocytic differentiation in establish leukemia cell line models (Machado-Neto, et al. 2012). IRS2 was found to be constitutively associated with JAK2 in the JAK2 V617F-mutated HEL cells, but not in the JAK2 wild type U937 cells (de Melo Campos, et al. 2016). In HEL cells, though not in U937 cells, IRS2 silencing reduced cell viability and increased apoptosis; these effects were enhanced when combined with ruxolitinib, a selective JAK1/2 inhibitor. In addition, CD34+ cells from JAK2V617F-mutated myeloproliferative neoplasm patients presented increased IRS2 mRNA levels (de Melo Campos, et al. 2016). Savage and colleagues (Savage, et al. 2015) described IRS2 mutations (SS94W and H1328R) in three out of 22 chronic myeloid leukemia patients with tyrosine kinase inhibitors resistance. Expression of each of the two of the IRS2 mutations in Ba/F3 cells demonstrated transformation capacity in the absence of IL3 (Savage, et al. 2015). When co-expressed in Ba/F3 cells with BCR-ABL1, these IRS2 mutants conferred varying degrees of reduced sensitivity to imatinib in vitro (Savage, et al. 2015).

**Glioblastoma**

In a study focused on PI3K/AKT-related gene expression analysis in glioblastoma involving 103 patients, the IRS2 gene was amplified and overexpressed in 2 cases and IRS2 was also highly expressed in six cases with no demonstrated amplification (Knobbe, et al. 2003). Xu and colleagues (Xu, et al. 2011) identified IRS2 as a target of MicroRNA-153 and suggested that MicroRNA-153 suppressed PI3K/AKT signaling through IRS2 inhibition in the DBTRG-05MG human glioblastoma cell line.

**Prostate cancer**

Szabolcs and colleagues (Szabolcs, et al. 2009) reported a high expression of IRS2 in prostate cancer cell lines and in primary human prostate cancer samples, in which IRS2 was also correlated with MYC expression in prostate tumor samples. Ibuki et al. (Ibuki, et al. 2014) demonstrated an elevated IRS2 expression by immunohistochemistry in prostate cancer biopsies when compared to normal specimens. The in vitro treatment of LNCaP human prostate cancer cells with NT157, a IRS1/2 inhibitor, resulted in increased apoptosis and decreased cell proliferation (Ibuki, et al. 2014). Huang and colleagues (Huang, et al. 2012) observed that IRS2 rs7986346 polymorphism was associated with disease progression and impaired survival in prostate cancer patients treated with androgen-deprivation.

**Thyroid cancer**

In the FRTL-5 rat thyroid cell line, the "RET/PTC3 rearrangement” (inv(10)(q11q11) with NCOA4/RET rearrangement), a constitutively activated tyrosine kinase receptor that is frequent in papillary thyroid cancer, induces IRS2 upregulation, and enhances IRS2/PI3K interaction and AKT activation (Miyagi, et al. 2004). Akker and colleagues (Akker, et al. 2014) observed no association between IRS2 G1057D (rs1805097) polymorphism and differentiated thyroid cancer development in a cohort of 93 differentiated thyroid cancer patients and 111 healthy controls.

**Mesothelioma**

IRS2 was found to be highly expressed in pleural mesothelioma samples and associated with cell motility in the H2461 cell line (Hoang, et al. 2004).

**Clear cell renal cell carcinoma**

Using semi-quantitative PCR, Al-Sarraf and colleagues (Al-Sarraf, et al. 2007) investigated IRS1, IRS2 and IRS5 mRNA expression in a cohort of 10 patients with clear cell renal carcinoma, comparing normal adjacent tissue with the respective tumor tissue for the analysis, and found an upregulation of IRS2 and IRS5 mRNA in tumor samples (Al-Sarraf, et al. 2007).

**Endometrial cancer**

Cayan and colleagues (Cayan, et al. 2010) reported that IRS2 G1057D (rs1805097) polymorphism was associated with the development of endometrial cancer in a cohort of 44 patients with colon cancer and 101 controls.

**Malignant peripheral nerve sheath tumor**

High expression of IRS2 was observed in malignant peripheral nerve sheath tumor compared to neurofibromas (Shaw, et al. 2012). IRS2 expression was also associated with reduced survival in malignant peripheral nerve sheath tumors using univariate analysis (Shaw, et al. 2012).

**Bladder cancer**

Using cDNA microarray analysis, Zekri and colleagues (Zekri, et al. 2015) found IRS2 upregulation among the genes differently expressed identified in bladder cancer.

**Lung cancer**

Park and colleagues (Park, et al. 2015) identified IRS2 as a MIR146A (MicroRNA-146a) target and suggested that MicroRNA-146a might suppress lung cancer progression by IRS2 inhibition.

**Melanoma**

In the MDA-MB-435 melanoma cell line, IRS2 signaling was identified as a key mediator of
invasion promoted by α6β4 (Shaw 2001). In A375 human melanoma cells, the in vitro treatment with NT157, a IRS1/2 inhibitor, led to growth suppression of melanoma cells by degradation of IRS1 and IRS2 (Reuveni, et al. 2013). Moreover, NT157 strongly inhibited the development of lung metastases of melanoma cells in mouse models (Reuveni et al. 2013).

**Esophageal squamous cell carcinoma**

Liu and colleagues (Liu, et al. 2015) identified IRS2 as a target of MicroRNA-146a and suggested that MicroRNA-146a suppressed esophageal squamous cell carcinoma growth through inhibition of IRS2. Corroborating these findings, in the MicroRNA-146a-expressing EC109 esophageal squamous cell carcinoma cell line, IRS2 recovery experiments increased cell growth.

**Gastric cancer**

Yamashita et al. (Yamashita, et al. 2006) described that IRS2 was methylation-silenced in gastric cancer specimens. Zhao and colleagues (Zhao, et al. 2012), reported that IRS2 G1057D (rs1805097) polymorphism was associated with increased susceptibility for gastric cancer in a cohort of 197 patients with gastric cancer and 156 age- and sex-matched controls.

**Oral squamous cell carcinoma**

Gao and colleagues (Gao, et al. 2014) described that IRS2 expression was negatively associated with histological differentiation of oral squamous cell carcinoma. In addition, IRS2 inhibition reduces cell proliferation, clonogenicity, cell cycle progression and PI3K/AKT activation in the human oral squamous cell carcinoma Tca-8113 cell line (Gao, et al. 2014).

**To be noted**

Homzygous absence of the Irs2 gene results in type II diabetes and causes female infertility in mice (Burks, et al. 2000; Withers, et al. 1998). In view of the importance of IRS proteins for cancer development and progression, a great effort has been made in an attempt to develop or identify compounds capable of inhibiting signaling mediated by IRS proteins.

In this sense, a unique subfamily of IGF1R signaling inhibitors (NT compounds) has been developed (Reuveni, et al. 2013), NT157, the most characterized NT compound, binds to IGF1R and induces a conformational change, leading to the dissociation of IRS1/2 from the receptor and IRS1/2 degradation by the proteasome. NT157 was found to lead to long-lasting IGF1R inhibition, apoptosis, and present a potent antitumor effects in melanoma cells but not in normal melanocytes (Flashner-Abramson, et al. 2015; Reuveni, et al. 2013), osteosarcoma cells (Garofalo, et al. 2015), prostate adenocarcinoma cells (Ibuki, et al. 2014) and colorectal cancer cells (Sanchez-Lopez, et al. 2015).

**References**


Byron SA, Horwitz KB, Richer JK, Lange CA, Zhang X, Yee D. Insulin receptor substrates mediate distinct biological responses to insulin-like growth factor receptor activation in breast cancer cells. Br J Cancer. 2006 Nov 6;95(9):1220-8


Day E, Poulouianis G, McLaughan F, Mulolland S, Arends MJ, Ibrahim AE, Dear PH. IRS2 is a candidate driver...
IRS2 (insulin receptor substrate 2)  

Machado-Neto JA, et al.


Kim B, Feldman EL. Insulin receptor substrate (IRS-2), not IRS-1, protects human neuroblastoma cells against apoptosis. Apoptosis. 2009 May;14(5):655-73


Mardilovich K, Shaw LM. Hypoxia regulates insulin receptor substrate-2 expression to promote breast cancer cell survival and invasion Cancer Res 2009 Dec 1;69(23):8894-901


Morelli C, Garofalo C, Bartucci M, Surmacz E. Estrogen receptor-alpha regulates the degradation of insulin receptor substrates 1 and 2 in breast cancer cells Oncogene 2003 Jun 26;22(26):4007-16

Atlas Genet Cytogenet Oncol Haematol. 2017; 21(2)
Nagie JA, Ma Z, Byrne MA, White MF, Shaw LM. Involvement of insulin receptor substrate 2 in mammary tumor metastasis Mol Cell Biol 2004 Nov;24(22):9726-35


Porter HA, Perry A, Kingsley C, Tran NL, Keegan AD. IRS1 is highly expressed in localized breast tumors and regulates the sensitivity of breast cancer cells to chemotherapy, while IRS2 is highly expressed in invasive breast tumors Cancer Lett 2013 Sep 29;338(2):239-48

Rashad NM, El-Shal AS, Abd Elbary EH, Abo Warda MH, Hegazy O. Impact of insulin-like growth factor 2, insulin-like growth factor receptor 2, insulin receptor substrate 2 genes polymorphisms on susceptibility and clinicopathological features of hepatocellular carcinoma Cytokine 2014 Jul;68(1):50-8


Savage SL, Eide CA, Concannon KF, Bottomly D, Wilmot B, McWeeny SK, Maxson JE, Tyner JW, Tognon CE and Druker BJ. Activating Mutations of Insulin Receptor Substrate 2 (IRS2) in Patients with Tyrosine Kinase Inhibitor-Refractory Chronic Myeloid Leukemia.E Blood (ASH Annual Meeting Abstracts) 2015 126 (23); Abstract #2461.

Shaw CM, Grobmyer SR, Ucar DA, Cancé WG, Reith JD, Hochwald SN. Elevated expression of IRS2 in the progression from neurofibroma to malignant peripheral nerve sheath tumor Anticancer Res 2012 Feb;32(2):439-43

Shaw LM. Identification of insulin receptor substrate 1 (IRS-1) and IRS-2 as signaling intermediates in the alpha6beta4 integrin-dependent activation of phosphoinositide 3-OH kinase and promotion of invasion Mol Cell Biol 2001 Aug;21(15):5082-93


Uddin S, Yenush L, Sun XJ, Sweet ME, White MF, Platianis LC. Interferon-alpha engages the insulin receptor substrate-1 to associate with the phosphatidylinositol 3'-kinase J Biol Chem 1995 Jul;270(27):19338-41


Withers DJ, Gutierrez JS, Towery H, Burks DJ, Jen JM, Previs S, Zhang Y, Bernal D, Pons S, Shulman GI, Bonner-Weir S, White MF. Disruption of IRS-2 causes type 2 diabetes in mice Nature 1998 Feb 26;391(6670):900-4


Yenush L, White MF. The IRS-signalling system during insulin and cytokine action Bioessays 1997 Jun;19(6):491-500


Zhang Q, Berggren PO, Hansson A, Tally M. Insulin-like growth factor-1-induced DNA synthesis in insulin-secreting cell line RINm5F is associated with phosphorylation of the insulin-like growth factor-1 receptor and the insulin receptor substrate-2. J Endocrinol 1998 Mar;156(3):573-81


This article should be referenced as such: