der(9)t(1;9)(q12;q12)

Adriana Zamecnikova, Soad al Bahar

Kuwait Cancer Control Center, Department of Hematology, Laboratory of Cancer Genetics, Kuwait; annaadria@yahoo.com

Published in Atlas Database: January 2016
Online updated version: http://AtlasGeneticsOncology.org/Anomalies/der9t0109q12q12t121649.html
Printable original version: http://documents.revues.inist.fr/bitstream/handle/2042/66939/01-2016-der9t0109q12q12121649.pdf
DOI: 10.4267/2042/66939

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 2.0 France Licence.
© 2016 Atlas of Genetics and Cytogenetics in Oncology and Haematology

Abstract
Review on der(9)t(1;9)(q12;q12), with data on clinics.

Clinics and pathology

Disease
Myeloid malignancies mainly.

Phenotype/cell stem origin
6 patients were diagnosed with chronic myeloproliferative disorders (MPD): polycythemia vera (PV) 5 cases (Rege-Cambrin et al., 1991; Najfeld et al., 2002; Jacob et al., 2003; Sambani et al., 2005) and myelofibrosis (MF) 1 patient (Sambani et al., 2005). 1 patient was diagnosed with plasma cell leukemia (Heller et al., 2004) and 1 with follicular lymphoma (Mohamed et al., 2001) (Table 1).)

Epidemiology
Sporadic cases; found in 4 male and 4 female patients (sex ratio 1:1) aged 53 to 73 years.

Prognosis
Unknown, rare occurrence.

Cytogenetics

Cytogenetics morphological
Presents as 2 normal chromosomes 1 and 9 and an extra der(9)t(1;9) chromosome in 7 out of 8 cases.

Additional anomalies
Sole abnormality in 2 MPD patients (Sambani et al., 2005), associated with limited additional anomalies in the remaining MPD patients (each case 1): +8 (Jacob et al., 2003), +9 (Najfeld et al., 2002), del(5)(q14q32) (Rege-Cambrin et al., 1991) and del(11)(q22) (Sambani et al., 2005); complex karyotypes in plasma cell leukemia and lymphoma patients.

Result of the chromosomal anomaly

Fusion protein

Oncogenesis
The unbalanced der(9)t(1;9)(q12;q12) is a rare but recurrent chromosome translocation, found mainly in chronic myeloproliferative neoplasms. The breakpoints in chromosomes 1 and 9 are within the constitutive heterochromatin bands that are notoriously unstable chromosomal regions and permit formation of complex and unstable chromosomal translocations. Mostly, these rearrangements are unbalanced and accompanied by genomic imbalances, casually implicated in disease initiation or progression. The presence of an extra der(9)t(1;9)(q12;q12) results in trisomy of both 1q and 9p arms, therefore altered dosages of genes are likely to be involved in neoplastic processes.

The presence of either trisomy 9 or +9p trisomy suggests that gene-dosage effect of JAK2, located at 9p24.1 may contribute to MPD phenotype. In addition, the observation that MPD patients with 9/+9p trisomy are invariably JAK2V617F-positive (Campell et al., 2006) imply a role for JAK2 cooperating mutation in myeloproliferative disorders.
<table>
<thead>
<tr>
<th>Ref</th>
<th>Sex/Age</th>
<th>Disease</th>
<th>Karyotype</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>F/53</td>
<td>Polycythemia vera</td>
<td>47,XX, del(5)(q14q32), +der(9)t(1;9)(q12;q12)</td>
</tr>
<tr>
<td>2.</td>
<td>F/63</td>
<td>Follicular lymphoma</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>M</td>
<td>Polycythemia vera</td>
<td>46,XY, der(9)t(1;9)(q12;q12), +9</td>
</tr>
<tr>
<td>4.</td>
<td>F/60</td>
<td>Polycythemia vera</td>
<td>48,XX, +8, +der(9)t(1;9)(q12;q12)</td>
</tr>
<tr>
<td>5.</td>
<td>M</td>
<td>Plasma cell leukemia</td>
<td>51,XY, -1, -1, +3, +der(5)t(5;11)(q13-14q24)t(1;11)(q12q25), +7 or</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>der(7)t(1;7)(p31;p15), +8, +der(9)t(1;9)(q12q12), der(11)t(1;11)(p31;p15)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>t(1;11)(q12q25), -13, der(14)t(X;14)(q21;p13), +15, +18, der(19)t(9;19)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(q12q11), +i(19)(q10)</td>
</tr>
<tr>
<td>6.</td>
<td>M/73</td>
<td>Polycythemia vera</td>
<td>47,XY, +der(9)t(1;9)(q12;q12), del(11)(q22)/47, idem, der(17)t(13;17)</td>
</tr>
<tr>
<td>7.</td>
<td>F/53</td>
<td>Idiopathic myelofibrosis</td>
<td>47,XX, +der(9)t(1;9)(q12;q12)</td>
</tr>
<tr>
<td>8.</td>
<td>M/70</td>
<td>Polycythemia vera</td>
<td>47,XY, +der(9)t(1;9)(q12;q12)</td>
</tr>
</tbody>
</table>

| Table 1. Reported patients with der(9)t(1;9)(q12;q12). |

References

Mohamed AN, Palutke M, Eisenberg L, Al-Katib A. Chromosomal analyses of 52 cases of follicular lymphoma with t(14;18), including blastic/blastoid variant. Cancer

This article should be referenced as such:

Genet Cytogenet. 2001 Apr 1;126(1):45-51