Leukaemia Section
Short Communication

der(1;9)(q10;p10)

Adriana Zamecnikova, Soad al Bahar
Kuwait Cancer Control Center, Department of Hematology, Laboratory of Cancer Genetics, Kuwait; annaadria@yahoo.com

Published in Atlas Database: January 2016
Online updated version: http://AtlasGeneticsOncology.org/Anomalies/der0109q10p10ID1647.html
Printable original version: http://documents.irevues.inist.fr/bitstream/handle/2042/66090/01-2016-der0109q10p10ID1647.pdf
DOI: 10.4267/2042/66090

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 2.0 France Licence. © 2016 Atlas of Genetics and Cytogenetics in Oncology and Haematology

Abstract
Review on der(1;9)(q10;p10), with data on clinics.

Clinics and pathology

Disease
Myeloid malignancies, rarely acute lymphocytic leukemia (ALL), multiple myeloma (MM) and lymphoma.

Phenotype/cell stem origin
10 patients were diagnosed with myeloid malignancies: polycythemia vera (PV) 7 cases (den Nijs van Weert et al., 1989; Swolin et al., 1986; Rege-Cambrin et al., 1991; Boiocchi et al., 2013), myelofibrosis (MF) 2 (Rege-Cambrin et al., 1991; Reilly et al., 1997) and acute myeloid leukemia 1 patient (Bobadilla et al., 2007). There were 4 multiple myeloma MM (Mohamed et al., 2007; Gabrea et al., 2008; Sawyer et al., 2014), 1 ALL (Uckun et al., 1998) and 1 diffuse large B-cell lymphoma (Martin-Subero et al., 2007) cases (Table 1).

Epidemiology
Rare anomaly, found in 6 male and 10 female patients aged 30 to 62 years.

Prognosis
Found in association with leukaemic or myelofibrotic transformation in 7 out of 10 myeloid cases; may represent a poor prognostic indicator with a high propensity to transformation in myeloproliferative disorders.

Cytogenetics

Cytogenetics morphological

Presents as 2 normal chromosomes 1, one normal chromosome 9 and a der(9)t(1;9) chromosome in 4 patients and as +der(1;9)(q10;p10) in 12 cases.

Additional anomalies

Found as the sole abnormality in 1 patient (den Nijs van Weert et al., 1989) and most frequently in combination with numerical anomalies in myeloid cases: loss of chromosomes 5 (Swolin et al., 1986) and/or 7 (Swolin et al., 1986; den Nijs van Weert et al., 1989) in 2 and with extra chromosome 8 in 4 patients (Swolin et al 1986; den Nijs van Weert et al., 1989; Rege-Cambrin et al., 1991). Numerical gain of chromosome 9, detected in 4 patients (Swolin et al 1986; den Nijs van Weert et al., 1989; Boiocchi et al 2013) is of special interest since it was found only in independent clones that appeared simultaneously or in sequence including the case presenting with trisomy 9 as a sole anomaly who developed an extra der(1;9) during the course of the disease with disappearance of the extra chromosome 9 (den Nijs van Weert et al., 1989).
A t(1;9)(p10;q10) in addition to der(1;9)(q10;p10) chromosome was observed in two patients (Swolin et al., 1986; Reilly et al., 1997). Deletions of the long arms of either chromosome 13 (Rege-Cambrin et al., 1991) or 20 (Swolin et al., 1986) appeared in 3 patients and 2 reported patients showed 12p rearrangements (den Nijs van Weert et al., 1989; Bobadilla et al., 2007).
Result of the chromosomal anomaly

Fusion protein

Oncogenesis

Acquired whole-arm chromosome translocations (WAT) of the long arm of chromosome 1 are nonrandom in hematologic malignancies and commonly involve centromeric or paracentromeric sites of chromosome partners. Mostly, these rearrangements are unbalanced leading to genomic imbalances, such as 1q trisomy and monosomy of the whole-arm of the involved chromosome. The unbalanced der(1;9)(q10;p10) is created by translocation between the whole arms of chromosomes 1 and 9 by fusion in their centromeric regions probably as a result of heterochromatin breakage and reunion in centromeric sequences (Sambani et al., 2005). Structural homologies of large blocks of constitutive heterochromatin in chromosome 1 and 9 centromeric regions might favor such recombination.

der(1;9)(q10;p10) is a relatively cytogenetic aberration that presumably occur in myeloproliferative neoplasms (den Nijs van Weert et al., 1989; Rege-Cambrin et al., 1991). In the majority of these cases, it was found as +der(1;9)(q10;p10), therefore leading to trisomy of both 1q and 9p arms. The formation of an extra copies of the entire chromosome arms are likely to be implicated in a neoplastic processes by a gene dosage effect, analogous to numerical aberrations. The occurrence of +9 in patients with trisomy of both 1q and 9p arms.

Table 1. Reported patients with der(1;9)(q10;p10).

<table>
<thead>
<tr>
<th>Ref.</th>
<th>Case Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>M/35 PCL 44.X,Y (6:8)(q13:p11), der(9)t(1;9)(q12;q34)dup(1)(q12q44),-13</td>
</tr>
<tr>
<td>2.</td>
<td>M MM 45.XY,del(1)(p21p31), der(9)t(1;9)(q11q34), del(12)(q13q24),-13,add(14)(q32),del(16)(q21),+19/44,idem,del(6)(q15),del(14;15)(q10;10)add(14)(q32)/90,idemx2</td>
</tr>
<tr>
<td>3.</td>
<td>M MM 46-56,XY,+2,+3,+5,+6,del(6)(q23)x2,+7,+9,der(9)t(1;9)(q12;34)x2,+11,+15,+17,+19,+mar</td>
</tr>
<tr>
<td>4.</td>
<td>F/52 PV 46,XX,del(3)(p21), der(9)t(1;9)(q11;q34)</td>
</tr>
<tr>
<td>5.</td>
<td>F/56 AML-M4 46,XX,der(9)(t;1;9)(q11;q34)</td>
</tr>
<tr>
<td>6.</td>
<td>M/57 MM 44,XY,der(3)(t;1;3)(q21;q29), t(4;14)(p16;q32), der(9)(1;9)(q12;q34),-10,-13</td>
</tr>
<tr>
<td>7.</td>
<td>M/45 CMML 46,XY,der(9)t(1;9)(q11;q34)BCL-ABL1 negative</td>
</tr>
<tr>
<td>8.</td>
<td>M MM 82-92,XY,-Y,-1,-1,der(1)add(1)(p36)add(1)(q42),-2,-2,del(3)(q21)x2,-4,-4,add(5)(q15),der(5)t(1;5)(q12;q15),add(6)(q21)x2,+7,+7,add(7)(p22),add(7)(q36),der(7)t(7;17)(q12;32)x3,+8,der(8)t(1;8)(q12;q22)x2,+4,+9,add(9)(p24),der(9)t(1;9)(q12;34),der(10)t(1;10)(q12;26),add(11)(p15)x2,-12,-13,del(13)(q12;22)x3,-14,der(14)(t;11;14)p11;q32)x3,-15,15,add(15)(p11),add(16)(q24),-17,add(17)(p11)x2,+19,+19,-20,add(21)(p11),+22,add(22)(q13),inc</td>
</tr>
<tr>
<td>9.</td>
<td>F/59 AML-M4 46,XX,t(8;16)(p11;p13)/46,idem,der(3)(t;3;11)(q27;13),der(9)t(1;9)(q24;q34)</td>
</tr>
<tr>
<td>10.</td>
<td>F/54 AML-M7 48,XX,+5(9;22)(q34;11),+der(22)(9;22)</td>
</tr>
<tr>
<td>11.</td>
<td>F AML 48,XX,der(9)(t;1;9)(q23;q34),+11,+21</td>
</tr>
<tr>
<td>12.</td>
<td>M/66 CML 46,XY,t(2;17)(p13;q22), der(9)t(1;9)(q21;q34), t(9;22)(q34;q11), der(19)t(19;20)(p13;p11),-20, der(22)t(9;22)(46,X;X;10)(q22;22)(13),+16,add(21;22)(q13),5 months after PBSCT</td>
</tr>
<tr>
<td>13.</td>
<td>F/0 BAL 46,XX,t(1;15;11;10)(p36;q11;q23;24), der(12)(q10;q10)/46,idem,t(1;12)(p10;10), der(9)t(1;9)(q25;q34)</td>
</tr>
<tr>
<td>14.</td>
<td>F/1 AML-M7 46,XX,i(7)(q10), der(9)t(1;9)(q25;q34), -16,add(19)(q13),+21c</td>
</tr>
</tbody>
</table>

to the mutation, thus JAK2 activating mutations may cooperate with 9/9p trisomy. It can be hypothesized that the gain-of-function of JAK2 contributes to the disease phenotype while its enhanced constitutive activation provides a proliferative advantage (Reilly et al., 2008; Campbell et al., 2006). While the timing of the JAK2 mutation is unclear, the occurrence of common trisomies and non-random chromosome deletions in these patients suggests that it may not be the initiating event, but chromosome aneuploidy and gene deletions may precede the acquisition of JAK2 mutations. These data suggest that multiple genetic events may be associated with the development of der(1;9)(q10;p10) that frequently coexists at presentation or later during the further course of the disease. The der(1;9)(q10;p10) is usually present with additional common abnormalities, therefore it is likely to be a secondary event, representing clonal evolution that may play a role in disease progression.

References
Reilly JT. Pathogenetic insight and prognostic information from standard and molecular cytogenetic studies in the BCR-ABL-negative myeloproliferative neoplasms (MPNs). Leukemia. 2008 Oct;22(10):1818-27
Van den Berghe H. Extra translocation +der(1q9p) is a prognostic indicator in myeloproliferative disorders. Leukemia. 1991 Dec;5(12):1059-63
This article should be referenced as such:

Atlas Genet Cytogenet Oncol Haematol. 2016; 20(10) 541