Leukaemia Section
Short Communication

der(9)t(1;9)(q11-12;q34)
Adriana Zamecnikova, Soad Al Bahar
Kuwait Cancer Control Center, Department of Hematology annaadria@yahoo.com

Published in Atlas Database: December 2015
Online updated version : http://AtlasGeneticsOncology.org/Anomalies/der0109q11q34ID1648.html
Printable original version : http://documents.revues.inist.fr/bitstream/handle/2042/66087/12-2015-der0109q11q34ID1648.pdf
DOI: 10.4267/2042/66087

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 2.0 France Licence.
© 2016 Atlas of Genetics and Cytogenetics in Oncology and Haematology

Abstract

Review on der(9)t(1;9)(q11-12;q34), with data on clinics, and the genes involved.

Clinics and pathology

Disease
Myeloid malignancies, multiple myeloma (MM) and plasma cell leukemia (PCL).

Phenotype/cell stem origin
3 patients were diagnosed with myeloid malignancies: 1 patient with acute myelomonocytic leukemia (Piccaluga et al., 2004), 1 with polycytemia vera (PV) (Andrieux et al 2003) and 1 with chronic myelomonocytic leukemia (CMML) (Suh et al., 2009). There were 4 patients with MM (Smadja et al., 2001; Mohamedet al., 2007; Sawyer et al., 2014) and 1 case was diagnosed with plasma cell leukemia (Ueshima et al., 1983).
6 additional cases were found with various 1q21-25 and 9q34 breakpoints: 4 AML cases (Lai et al., 1987; Smadja et al 1992; Raimondi et al., 1999; Yoshida et al., 2013), 1 Chronic myelogenous leukemia (CML) patient (Erdag et al., 2009) and 1 patient with biphenotypic leukemia (Matsuda et., al 2009). (Table 1)

Epidemiology
There was 7 male and 7 female patients (sex ratio 1:1) aged 0 to 66 years including 2 infant patients, one of them with Down syndrome.

Prognosis
Unknown, very rare occurrence in patients with hematologic malignancies.

Cytogenetics

Cytogenetics morphological
Presents as 2 normal chromosomes 1, one normal chromosome 9 and a der(9)t(1;9) chromosome, resulting in 1q trisomy associated with partial monosomy of 9q.

Additional anomalies
All the 3 reported patients with myeloid malignancies showed this translocation either as the sole abnormality (Piccaluga et al., 2004; Suh et al., 2009) or as part of a simple karyotype (Andrieux et al., 2003). A complex karyotype was present in all MM patients, among them the 14q32 rearrangement was found as an accompanying anomaly in 3 out of 4 patients (Smadja et al., 2001; Mohamed et al., 2007; Sawyer et al., 2014).

Result of the chromosomal anomaly

Fusion protein

Oncogenesis
The unbalanced der(9)t(1;9)(q11-12;q34) is created by fusion in the centromeric region of 1q to a distant telomeric region of chromosome 9. It is a rare anomaly in patients with hematologic malignancies that results in trisomy of 1q associated with partial monosomy of 9q.
<table>
<thead>
<tr>
<th>Case</th>
<th>Gender</th>
<th>Age</th>
<th>Abnormalities</th>
</tr>
</thead>
<tbody>
<tr>
<td>M/35</td>
<td>PCL</td>
<td>44X,Y,t(6;8)(q13;p11),der(9)t(1;9)(q12;q34)dup(1)(q12q44),-13</td>
<td>1</td>
</tr>
<tr>
<td>M</td>
<td>MM</td>
<td>45,XY,del(1)(p21p31),der(9)t(1;9)(q11;q34),del(12)(q13q24),-13,add(14)(q32),del(16)(q21),+19/44,idem,del(6)(q16),der(14;15)(q10;q10)add(14)(q32)90,identx2</td>
<td>2</td>
</tr>
<tr>
<td>M</td>
<td>MM</td>
<td>46-56,XY,+2,+3,+5,+6,del(6)(q23)x2,+7,+9,der(9)t(1;9)(q12;q34)x2,+11,+15,+17,+19,marX2</td>
<td>3</td>
</tr>
<tr>
<td>F/52</td>
<td>PV</td>
<td>46,XX,del(3)(p21),der(9)t(1;9)(q11;q34),46,XX,der(9)t(1;9)</td>
<td>4</td>
</tr>
<tr>
<td>F/56</td>
<td>AML-M4</td>
<td>46,XX,der(9)t(1;9)(q11;q34)</td>
<td>5</td>
</tr>
<tr>
<td>M/57</td>
<td>MM</td>
<td>44,XY,der(3)t(1;3)(q21;q29),t(4;14)(p14;q32),der(9)t(1;9)(q12;q34),-10,-13</td>
<td>6</td>
</tr>
<tr>
<td>M/45</td>
<td>CMML</td>
<td>46,XY,der(9)t(1;9)(q11;q34)BCR-ABL1 negative</td>
<td>7</td>
</tr>
<tr>
<td>M</td>
<td>MM</td>
<td>82-92,XXY,Y-,-1,-1,der(1)add(1)(p36)add(1)(q42),-2,-2,del(3)(q21)x2,-4,-4,add(5)(q15),der(5)t(1;5)(q12;q15),add(6)(q21)x2,+7,+7,add(7)(p22),add(7)(q36),der(7)t(1;7)(q12;q32)x3,+8,der(8)t(1;8)(q12;q22)x2,+9,+9,add(9)(p24),der(9)t(1;9)(q12;q34)</td>
<td>8</td>
</tr>
</tbody>
</table>

Table 1. Reported patients with der(9)(q11-q12;q34) including additional cases with 1q21-q25 and 9q34 breakpoints.

Abbreviations: M, male; F, female; PCL, plasma cell leukemia; MM, multiple myeloma; PV, polycythemia vera; AML-M4, acute myelomonocytic leukemia; CMML, chronic myelomonocytic leukemia; AML-M7, acute megakaryoblastic leukemia; CML, chronic myelomonocytic leukemia; PBSCT, peripheral blood stem cell transplantation; BAL, bilineage or biphenotypic leukemia.

The formation of an extra copy of the entire 1q suggest that trisomy of genes located on 1q, rather than partial 9q monosomy is involved in disease pathogenesis. This is further supported by the occurrence of additional cases of der(9)t(1;9) with various 1q21-25 breakpoints, suggesting that altered gene dosages in a part or the entire long arm of chromosome 1 may be important for disease initiation or progression. Alternatively, the breakpoint at 9q34, where the ABL1 gene is located rises the possibility of its involvement in the translocation, at least in some patients. However, the absence of ABL1 rearrangement or the BCR / ABL1 fusion gene was excluded only in sporadic cases (Piccaluga et al., 2004; Suh et al., 2009).

Because of the rare occurrence, further studies are needed to evaluate the genes involved in the oncogenesis as well as the suggested association of this rearrangement with monocytic-lineage leukemia (Suh et al., 2009).
References

This article should be referenced as such:
