Leukaemia Section
Short Communication

der(1;7)(q10;p10)

Hélène Bruyère

Cytogenetics Laboratory, VGH, Department of Pathology and Laboratory Medicine, 899 12th Avenue West, Vancouver, BC, V5Z 1M9, Canada; Helene.Bruyere@vch.ca

Published in Atlas Database: November 2015
Online updated version: http://AtlasGeneticsOncology.org/Anomalies/t0107ID1003.html
Printable original version: http://documents.irevues.inist.fr/bitstream/handle/2042/66075/11-2015-t0107ID1003.pdf
DOI: 10.4267/2042/66075

This article is an update of:
Huret JL. t(1;7)(q10;p10). Atlas Genet Cytogenet Oncol Haematol 1999;3(1)

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 2.0 France Licence.
© 2016 Atlas of Genetics and Cytogenetics in Oncology and Haematology

Abstract

Review on der(1;7)(q10;p10), with data on clinics and cytogenetics.

Clinics and pathology

Note
Preponderant in myeloid disorders.

Disease

Myelodysplastic syndromes (MDS) in 60% of cases.
Acute myeloid leukemia (AML) in 30%, most commonly AML-M2 but reported in all FAB subtypes; frequently with preceding MDS.
Myeloproliferative neoplasms (MPN) represent the remaining 10% of cases.

Lymphoid disorders: very rare, half of cases being multiple myeloma with the der(1;7) as the sole abnormality (raising the possibility of an underlying MDS), the other half in various lymphoid disorders chronic lymphocytic leukemia (CLL), Burkitt lymphoma/leukemia, follicular lymphoma), most often part of a complex karyotype (Geisler et al., 1997; Hsiao et al., 2005; Al-Bahar et al., 2010).
Others: reported in only one case each of bilineage or biphenotypic acute leukemia with a t(9;22) (Sanada et al. 2007), sarcoma (Roberts et al., 2008) and carcinoma (Jin et al., 2002) with complex karyotypes and in two cases of aplastic anemia (Kim et al., 2010).

Phenotype/cell stem origin

MDS cases: most commonly RA (60%).
AML cases: most commonly M2 but has been reported in all FAB subtypes.
MPN cases: reported in a few cases of polycytemia vera, essential thrombocytemia, chronic myelomonocytic leukemia and idiopathic myelofibrosis.

Epidemiology

Found in 1.5-6% of MDS, 0.2-2% of AML and rarely in MPN. Older adults mostly (median late 50's, early 60's, male predominance (4M/1F), influenced partly by the preponderance of males in a large study of Japanese MDS cases with der(1;7) (Sanada et al., 2007).

Prognosis

MDS: There is some controversy as to the prognosis of the der(1;7) with trisomy 1q and monosomy 7q. A better outcome of der(1;7) compared to -7/del(7q) cases was shown in a retrospective study including 77 cases (Sanada et al., 2007), while there was no statistical difference in overall survival between der(1;7) versus del(7q) versus -7 in several studies including a smaller number of patients (Slovak et al., 2009; Hussain et al., 2012).
AML: In the UKMRC trials, the der(1;7) may be included in the “-7/del(7q)” group, associated with a poor prognosis (Grimwade et al., 2010). In the CALGB 8461 study, loss of 7q was associated with an intermediate prognosis (Byrd et al., 2002).
Cytogenetics

Cytogenetics morphological

Unbalanced whole-arm translocation with two chromosomes 1, a derivative chromosome including the long arm of chromosome 1 and the short arm of chromosome 7, and a chromosome 7 resulting in trisomy for 1q / monosomy for 7q. The balanced form may have been reported once in a secondary AML-M2 case (Higuchi et al., 1995).

Additional anomalies

85% of cases are not complex if the unbalanced der(1;7) with extra chromosome 1 is considered as a single abnormality (“single abnormality” in 50% of cases, one additional abnormality in the remaining 35%). The most frequent additional abnormalities are: +8 (50%); del(20q) (20%); +21 or +9 (3% each). A cytogenetically unrelated, abnormal clone is found in 5% of cases, 80% in MDS, 20% in AML. Loss of Y, -7 and +8 are the most common abnormalities.

References


Higuchi T, Okada S, Mori H, Nikura H, Omine M, Terada H. Leukemic transformation of polycythaemia vera and


Hsiao HH, Sashida G, Ito Y, Tachino M, Beppu H, Ohyashiki K. Simultaneous occurrence of der(1;7)(q10;p10) and t(14;18)(q32;q21) in non-Hodgkin's lymphoma: der(1;7) will appear as a secondary change in lymphoid neoplasia. Leuk Lymphoma. 2005 Jun;46(6):949-50


Slovak ML, O'Donnell M, Smith DD, Gaal K. Does MDS with der(1;7)(q10;p10) constitute a distinct risk group? A retrospective single institutional analysis of clinical/pathologic features compared to -7/del(7q) MDS. Cancer Genet Cytogenet. 2009 Sep;193(2):78-85


This article should be referenced as such: