Leukaemia Section
Short Communication

der(20)t(1;20)(q10-21;q11-13)

Adriana Zamecnikova, Soad Al Bahar
Kuwait Cancer Control Center, Laboratory of Cancer Genetics, Department of Hematology, Shuwaikh, 70653, Kuwait

Published in Atlas Database: June 2015
Online updated version : http://AtlasGeneticsOncology.org/Anomalies/t0120q10q11ID1657.html
Printable original version : http://documents.irevues.inist.fr/bitstream/handle/2042/66059/06-2015-t0120q10q11ID1657.pdf
DOI: 10.4267/2042/66059

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 2.0 France Licence.
© 2016 Atlas of Genetics and Cytogenetics in Oncology and Haematology

Abstract
Review on t(1;20)(q10-21;q11-13), with data on clinics.

Clinics and pathology

Disease
Acute myeloid leukemia (AML), acute lymphoblastic leukemia (ALL), myeloproliferative neoplasm (MPN), Myelodysplastic syndrome (MDS), multiple myeloma (MM), Burkitt lymphomas and non-Burkitt type lymphomas.

Phenotype/cell stem origin
Suggested involvement of a pluripotent stem cell.

Epidemiology
Rare karyotypic event in various hematologic malignancies; AML/MDS (5 cases), ALL (4 cases), MPN (2 cases), MM (4 cases), lymphoma (4 cases). Male predominance (15 males/ 3 females); patients ages ranged from 1 to 73 years; described mainly in adults (aged 28 to 73 years); all the 4 ALL patients were children (aged 1 to 7 years) (Table 1).

Prognosis
Seems to confer a poor prognosis.

<table>
<thead>
<tr>
<th>Sex</th>
<th>Age</th>
<th>Karyotype</th>
<th>Diagnosis</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>M</td>
<td>49</td>
<td>46,XY,t(3;11)(p13q21)/46,XY,der(20)t(1;20)(q21;q13) biclonal clones</td>
<td>PV</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td></td>
<td>46,XX.dup(1)(q21q25),dup(1)(q21q42),del(7)(q31),del(11)(q21q25),add(17)(q25),der(20)t(1;20)(q10;q13)</td>
<td>MDS</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>46,XX.dup(1)(q21q42),del(7),del(11),der(20)t(1;20)</td>
<td>Alter et al; 2000</td>
</tr>
<tr>
<td>3</td>
<td>M</td>
<td>38</td>
<td>47,XY,del(1)t(1;20)(q21;q11)del(1)(p11),-9,t(9;22)(q34q11),+18,der(20)t(1;20)(q21q11)</td>
<td>CML</td>
</tr>
<tr>
<td>4</td>
<td>M</td>
<td>30</td>
<td>46,XY,t(11;12)(q13;p13)/46,ident,der(9)t(1;9)(q12;p24)/46,ident,der(14)t(1;14)(q12;p10)/46,ident,der(20)t(1;20)(q12q13)/46,ident,der(21)t(1;21)(q12q10)</td>
<td>AML-M5</td>
</tr>
<tr>
<td>5</td>
<td>F</td>
<td></td>
<td>46,XX,der(20)t(1;20)(q21q13)</td>
<td>AML</td>
</tr>
<tr>
<td>6</td>
<td>M</td>
<td>34</td>
<td>47,XY,t(9;22)(q34q11),t(10;21)(p11;22),der(20)t(1;20)(q21q13),+der(22)t(9;22)(q48,ident,+8</td>
<td>AML-M1</td>
</tr>
<tr>
<td>7</td>
<td>F</td>
<td>7</td>
<td>56,XX,X,X,t(2;16)(p12q12),+4,+5,+6,+10,+18,der(20)t(1;20)(q12q13),+21,+21,+mar</td>
<td>ALL</td>
</tr>
<tr>
<td>8</td>
<td>M</td>
<td></td>
<td>56,XY,X,Y,+5,+6,(7)(q10),+9,+10,+11,+18,der(20)t(1;20)(q12q13),+21,+22</td>
<td>ALL</td>
</tr>
<tr>
<td>9</td>
<td>F</td>
<td>1</td>
<td>46,XX,t(4;11)(q21q23),der(20)t(1;20)(q11q13)</td>
<td>ALL</td>
</tr>
</tbody>
</table>
Cytogenetics

Cytogenetics morphological

Cytogenetically heterogeneous, the breakpoints in 1q varied from 1q10 to 1q21, with a clustering to 1q21, and the 20q breaks occurred in 20q10 to 20q13, mainly in the 20q13 region.

![Partial karyotypes showing the unbalanced t(20q)(q10;11)](image)

Additional anomalies

Usually present with additional chromosomal abnormalities; may be found together with well-known primary abnormalities such as t(9;22)(q34;q11), t(4;11)(q21;q23), and t(14;18)(q23;q21), t(8;14)(q24;q32).

Result of the chromosomal anomaly

Fusion protein

Oncogenesis

Unbalanced translocations involving all or part of the long arms of chromosomes 1 and 20 are found in both hematologic neoplasms and lymphomas. The abnormality is usually present with complex pattern of rearrangements or occurring in a subclone; indicating that der(20t)(1;20) might be a secondary aberration. The extra copy of 1q segment and/or 20q monosome may directly or indirectly provide a proliferative advantage leading to clonal evolution associated with tumor progression and advanced disease.

References

Onosomy 7 in pediatric acute lymphoblastic leukemia is an adverse prognostic factor: a report from the Children's Cancer Group. Leukemia. 2004 May;18(5):939-47

Keung YK, Balogun OA, Tonk V. "Jumping translocation" and multiple myeloma. Cancer Genet Cytogenet. 1999 Jul 1;112(1):60-1

Smadja NV, Leroux D, Soulier J, Dumont S, Arnould C, Tavaux S, Tailleumite JL, Bastard C. Further cytogenetic characterization of multiple myeloma confirms that 14q32 translocations are a very rare event in hyperdiploid cases Genes Chromosomes Cancer 2003 Nov;38(3):234-9

This article should be referenced as such: