HMGA2 (high mobility group AT-hook 2)

Jian-Jun Wei

Floyd Elroy Patterson Research Professor of Pathology, Department of Pathology and Department of Obstetrics and Gynecology, Northwestern University Feinberg School of Medicine, Robert H. Lurie Comprehensive Cancer Center, Women's Health Research Institute, 251 East Huron Street, Feinberg 7-334, Chicago, Illinois 60611; jianjun-wei@northwestern.edu

Published in Atlas Database: October 2015
Online updated version: http://AtlasGeneticsOncology.org/Genes/HMGICID82.html
Printable original version: http://documents.irevues.inist.fr/bitstream/handle/2042/66056/10-2015-HMGICID82.pdf
DOI: 10.4267/2042/66056

This article is an update of:
Broberg K. HMGA2 (high mobility group AT-hook 2). Atlas Genet Cytogenet Oncol Haematol 2006;10(3)

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 2.0 France Licence.
© 2016 Atlas of Genetics and Cytogenetics in Oncology and Haematology

Abstract

HMGA2, the High Mobility Group A2 gene, is a non-histone and architectural transcription factor. As an oncofetal protein, HMGA2 plays an important role in development and contributes to the tumorigenesis of many epithelial and mesenchymal tumors.

Upregulation of HMGA2 by non-random chromosomal translocations is common in mesenchymal tumors, whereas by the altered transcription regulation is likely the major mechanism in malignant epithelial tumors and it involves much more complex mechanisms. HMGA2 directly and indirectly regulates the multiple biological and oncogenic pathways. Its oncogenic property remains to be fully characterized.

Keywords
HMGA2, Development, miRNA regulation, Stem cell self-renewal, transcription regulation, Oncofetal protein, neoplasia, Aging and senescence, epithelial-to-mesenchymal transition (EMT), non-random chromosomal translocation.

Identity

Other names: HMGIC, BABL, LIPO, STQTL9
HGNC (Hugo): HMGA2
Location: 12q14.3
Local order
telomeric to CDK4, centromeric to MDM2

FISH Probe(s) - Courtesy Mariano Rocchi
HMGA2 has long UTR (about 3,000 nt). HMGA2 can be potentially regulated by multiple miRNAs and one of well characterized miRNAs is let-7 family which contains at least five predicted bindings sites. MIRLET7E (Let-7) repression of HMGA2 expression at transcription and translation has been demonstrated in several different studies (Lee and Dutta 2007, Wang et al. 2007, Peng et al. 2008). Inverse association of Let-7 and HMGA2 is an important regulation mechanism in normal development and abnormal tumorigenesis (Park et al. 2007, Shell et al. 2007).

DNA/RNA

Description

5 exons, spans approximately 160 kb; a sixth alternative terminal exon within intron 3 has been described

Transcription

RNA: 4.1 kb.

Transcription initiated from two different promoter regions. A polymorphic dinucleotide repeat upstream of the ATG start codon strongly regulates HMGA2 expression. Moreover, HMGA2 is controlled by negatively acting regulatory elements within the 3'UTR

Protein

109 amino acids; three DNA binding domains (AT-hooks) linked to the carboxy-terminal acidic domain that does not activate transcription.

HMGA2 can directly regulate expression of many genes. Specific recognition of AT-rich DNA sequences by HMGA2 was reporte by a SELEX study. The relative heights are proportional to their frequencies shown in the 71 SELEX sequences (Cui and Leng 2007).

Expression

Fetal tissues: expression in various tissues, prominent in kidney, liver and uterus; **adult tissues**: no expression except in lung and kidney; **tumors**: expression in benign mesenchymal tumor tissues correlated to 12q15 rearrangements; expressed in malignant tumours (e.g., in breast tumours, pancreas tumours, ovarian cancer, lung tumours, colorectal cancer, nerve system tumours, oral cavity squamous cell cancer).

Localisation

Nuclear

Inverse expression pattern of HMGA2 and let-7 family in developmental and adulthood stages as well as neoplastic change (Park, Shell et al. 2007).
HMGA2 (high mobility group AT-hook 2)

Wei JJ

Atlas Genet Cytogenet Oncol Haematol. 2016; 20(7) 405

Immunohistochemistry shows that HMGA2 is specifically expressed and located in nucleus. Photomicrographs illustrate strong immunoreactivity for HMGA2 in leiomyoma with t(12;14) translocation and high grade serous ovarian carcinoma (Wu and Wei 2013, Bertsch et al. 2014).

It is widely accepted that functional CDKN2A (p16INK4a) and RB1 (pRb) as well as the HMGA2, which accumulate at E2F target promoters during senescence, are critically required for SAHF arrangement (Narita et al. 2006).

HMGA2 is regulated by non-coding miRNAs and coding genes. As a non-histone nuclear transcription regulator, HMGA2 has a broad influence in many gene expression, mainly target at epithelial-to-mesenchymal transition (EMT), cell proliferation, DNA damage repair, stem cell self-renewal and differentiation, as well as tumorigenesis of many benign and malignant mesenchymal and epithelial tumors (Wu and Wei 2013).

HMGA2 regulates stem cell potential for self-renewal. HMGA2 seems to be a major regulator of INK4a/ARF expression. HMGA2 reduces INK4A and ARF expression. HMGA2 binds to the Junb locus. As JUNB promotes INK4A/ARF expression in stem cells, thus promoting stem cell self-renewal. Increase in let-7 expression results in the downregulation of HMGA2 and the derepression of the INK4a/ARF and activation of p16INK4a expression in self-renewing cells. In Hmga2-deficient mice, it shows reduced stem cell numbers and self-renewal. Furthermore, p16(Ink4a) and p19(ARf) expression were increased in Hmga2-deficient fetal and young-adult stem cells, and deletion of p16(Ink4a) and/or p19(ARf) partially restored self-renewal capacity. (Yu et al. 2007, Nishino et al. 2008).
Function
Architectural factor, non histone, preferential binding to AT rich sequences in the minor groove of DNA helix; the precise function remains to be elucidated; probable role in regulation of cell proliferation.

Homology
Member of the HMGI protein family.

Mutations

Germinal
Deletion of HMGIC in mutant mice or transgenic 'knock out' mice for the first two exons of HMGIC have the "pigmy" phenotype: low birth weight, craniofacial defects, adipocyte hypoplasia adult body weight about 40% of normal; mice with a partial or complete deficiency of HMGA2 resisted diet-induced obesity implicating a role of the gene in fat cell proliferation; truncations of mouse Hmga2 in transgenic mice result in somatic overgrowth and, in particular, increased abundance of fat and lipomas; overexpression of the HMGA2 gene in transgenic mice leads to the onset of pituitary adenomas secreting prolactic and growth hormone; HMGA2-null mice had very few spermatids and complete absence of spermatooza.

8-year-old boy had a de novo pericentric inversion of chromosome 12, with breakpoints at p11.22 and q14.3.
The phenotype included extreme somatic overgrowth, advanced endochondral bone and dental ages, a cerebellar tumour, and multiple lipomas. His chromosomal inversion was found to truncate HMGA2, which maps to the 12q14.3 breakpoint.

Implicated in

MESENCHYMAL BENIGN TUMORS as follows:

Lipoma

Disease
benign adipocyte tumor

Prognosis
good

Cytogenetics
various rearrangements involving 12q15 (translocations, inversions, deletions...); reciprocal translocations involve 12q15 with different partners such as chromosomes 1, 2, 3, 7, 10, 11, 13, 15, 17, 21. X; the most frequent anomaly is t(3;12)(q27-28;q15); cryptic rearrangements, such as paracentric inversions not detectable by conventional cytogenetics but detectable by FISH, have been described.

Hybrid/Mutated gene
for t(3;12): HMGIC-LPP (LPP: lipoma preferred partner; 3q27-28); a gene located in 13q, LHFP (lipoma HMGIC fusion partner) was found to be fused with HMGIC in one case of lipoma; one lipoma displayed fusion of HMGA2 exon 4 with a sequence from intron 4, indicating abnormal splicing; HMGA2-CMKOR1 in three cases with aberrations involving 2q35-37 and 12q13-15; HMGA2-NFIB in one lipoma;

Abnormal protein
HMGIC-LPP; the three AT hook domains at the aminoterminal of HMGIC are fused to the LIM domain of LPP; another fusion protein due to the fusion of HMGIC with a putative gene located at 15q24 predicted to encode a protein with a serine/threonine-rich domain has also been described

Oncogenesis
the relevance of the exact role LPP in the HMGA2-LPP fusion is not established yet, but the transactivation functions of the LPP LIM domains is retained in the fusion protein and the fusion protein can function as a transcription factor; the truncation of HMGA2 by itself may have a role in the tumorigenesis

Uterine leiomyoma (uterine fibroids)

Disease
benign mesenchymal tumors

Prognosis
good

Cytogenetics
approximately 40% of uterine leiomyomas have structural chromosomal rearrangements, about 10% of which involve 12q15 (translocations, inversions, deletions...); the most frequent anomaly is t(12;14)(q15;q23-24)

Hybrid/Mutated gene
in a majority of cases, there is no fusion gene: the breakpoint is located 10 kb up to 100 kb 5’ to HMGIC; the recombinational repair gene RAD51B is a candidate to be the partner gene of HMGIC in t(12;14). In two cases (out of 81 primary tumors) exon 7 of RAD51B was fused in frame to either exon 2 or 3 of the HMGA2 gene; in one case with paracentric inversion, HMGI exon 3 was fused to ALDH2 exon 13 (12q24.1); in one case (no cytogenetic analysis) HMGI exon 3 was fused to COX6C 3’ UTR (8q22-23); in one case, with apparently normal karyotype, exon 3 of HMGI was fused to retrotransposon-like sequences RTVLH 3’ LTRs; three fusion transcripts contained 3’ cryptic exonic sequences present in intron 3 of the HMGA2 gene (breakpoints downstream of exons 3 or 4), suggesting that they are due to alternative splicing; one case displayed fusion of the first two exons of
HMGA2 to the 3’ portion of the CCNB1IP1/C14orf118/HEI10 gene

Abnormal protein
HMGI-C-ALDH2: ALDH2 contribution was only 10 amino acids;

Oncogenesis
HMGI-C-ALDH2: it is suggested that the truncation of HMGI-C, rather than fusion may be responsible for tumorigenesis; the 3’ untranslated region may stabilize the HMGI-C messenger RNA

Pleomorphic adenoma of the salivary gland (or mixed salivary gland tumor)

Disease
benign tumors from the major or minor salivary glands

Prognosis
good

Cytogenetics
approximately 12% of pleomorphic adenomas of salivary glands show abnormalities involving HMGI-C in 12q15; the most frequent aberration is t(9;12)(p24.1;q15)

Hybrid/Mutated gene
in t(9;12): HMGI-C-NF1B fusion; another type of fusion HMGI-C-FHIT (3p14.2) has also been described

Pulmonary chondroid hamartoma of the lung

Disease
benign mesenchymal tumors of the lung

Prognosis
good

Cytogenetics
various rearrangements involving 12q15 leading to HMGI-C dysregulation; cryptic rearrangements such as paracentric inversions not detectable by conventional cytogenetics but detectable by FISH have been described.

Myofibroblastic inflammatory tumor

Disease
benign mesenchymal tumors

Prognosis
good

Cytogenetics
in one case, a complex rearrangement involving chromosomes 12 (in 12q15), 4 and 21 was described

Chondroliopoangioma

Disease
a rare benign type of mesenchymomas composed predominantly of cartilage and adipose tissue with vascular elements and myxoid elements

Cytogenetics

HMGA2 and MED12 mutations are mutually exclusive and are the two independent factors for tumorigenesis of leiomyoma (Bertsch et al. 2014).
One case demonstrated t(12;15)(q13;q26). FISH analysis revealed rearrangement of chromosomes 2, 12 and 15 and HMGA2.

Chondromas

Disease benign cartilage tumours

Cytogenetics

HMGA2 was expressed in 4/6 soft tissue chondromas (all with 12q-rearrangements cytogenetically); three cases showed truncated (exons 1-3) transcripts, one case displayed a t(3;12)(q27;q15) and RT-PCR demonstrated a HMGA2-LPP fusion transcript composed of HMGA2 exons 1-3 and LPP exons 9-11.

Hyaline vascular Castleman’s disease

Cytogenetics

one case with der(6)t(6;12)(q23;q15)del(12)(q15) is described.

Hybrid/Mutated gene

a combined immunologic-cytogenetic approach demonstrated HMGA2 rearrangement in follicular dendritic cells

Prolactinoma

Disease prolactin-secreting pituary adenoma, non-metastasizing

Cytogenetics

trisomy 12 nonrandom finding in pituary adenomas

Hybrid/Mutated gene

HMGA2 locus amplified in 7/8 prolactinomas

Aggressive angiomyxoma of the vulva

Disease myxoid mesenchymal neoplasm

Prognosis

infiltrative neoplasm, locally destructive recurrences, no metastatic potential

Cytogenetics

one case displayed t(8;12)(p12;q15)

Hybrid/Mutated gene

FISH demonstrated a breakpoint 3' of the gene, the tumour expressed HMGA2

MALIGNANT TUMORS as follows:

Well-differentiated liposarcoma

Disease malignant adipocyte tumor; peripheral or retroperitoneal location

Prognosis

rather good; borderline malignancy; locally aggressive, rarely metastasizes

Cytogenetics

supernumerary ring or giant marker chromosomes containing 12q14-15 amplification (surrounding MDM2); HMGIC is frequently amplified together with MDM2; rearrangement of HMGA2, in addition to amplification has been described

Hybrid/Mutated gene

etopic sequences from 12q14-15, 1q24, 11q14, and chromosome 2 was shown to be fused to HMGA2 exon 2 or 3

Uterine leiomyosarcoma

Disease malignant counterpart of uterine leiomyoma

Prognosis

poor

Cytogenetics

12q13-15 region is recurrently amplified

Hybrid/Mutated gene

HMGA2 amplified within this region

Osteosarcoma

Disease malignant tumor

Hybrid/Mutated gene

in one osteosarcoma cell line (OsA-C1) the three DNA binding domains of HMGIC fused to the keratan sulfate protein glycan gene LUM (12q22-23); LUM was fused out of frame, and only 3 amino acids were fused to HMGIC; in addition, the rearranged gene was amplified

Myelofibrosis with myeloid metaplasia

Disease rare chronic myeloproliferative disorder

Prognosis

variable

Cytogenetics

one case with t(4;12)(q32;q15) and one case with t(5;12)(p14;q15)

Hybrid/Mutated gene

FISH analysis suggested breakpoint in HMGA2, RT-PCR revealed that HMGA2 is expressed in blood mononuclear cells from patients with this disease

Acute lymphoblastic leukaemia

Disease Heterogenous disease that arises in precursor B or T cells

Cytogenetics
One case with a t(9;12)(p22;q14), frequent deletions at 12q14.3

Hybrid/Mutated gene

t(9;12): FISH analysis indicated a breakpoint in the 5’ region of the gene. RT-PCR showed overexpression of HMGA2, lacking the carboxyterminal tail; deletions covering the 5’ end of HMGA2

High-grade serous carcinoma of the fallopian tubes

Disease
Serous carcinoma arising from fallopian tube secretory epithelia.

Oncogenesis
Overexpression of HMGA2 regulated by several genetic mechanism, including CTNNB1 (β - Catenin), TGF-β, miRNAs. Currently well defined miRNAs including let-7 and MIR-182.

MiR-182 promotes HMGA2 expression through negative regulation of BRCA1 (Moskwa et al. 2011, Liu et al. 2012).

HMGA2 regulates several EMT genes including STC2 and LUM (Wu et al. 2011).

Overexpression of HMGA2 is associated with early tumorigenesis, tumor cell proliferation, invasion and worse outcome through regulation of cell cycle, epithelial to mesenchymal transition (Wu et al. 2011).

Pancreatic carcinoma

Disease
Pancreatic ductal carcinoma.

Oncogenesis
Overexpression of HMGA2 promote EMT by regulation of SNAIL, SLUG, SIP1, TCF3 (E12/E47), and ZEB1 (Watanabe et al. 2009).

HMGA2 nuclear immunoreactivity correlates positively with lymph node metastases and high tumor grade (Hristov et al. 2009).

Breakpoints
See below.
Up to 21 partners have a breakpoint with HMGA2 are summarized. The majority of this non-random translocations were found to be in mesenchymal neoplasia (Wu and Wei 2013).

References

Bormann L, Seebeck B, Rogalla P, Bullerdiek J. Human HMGA2 promoter is coregulated by a polymorphic dinucleotide (TC)-repeat. Oncogene. 2003 Feb 6;22(5):756-60

Cui T, Leng F. Specific recognition of AT-rich DNA sequences by the mammalian high mobility group protein AT-hook: a SELEX study. Biochemistry. 2007 Nov 13;46(45):13059-66

Meza-Zepeda LA, Berner JM, Henriksen J, South AP, Pedeutour F, Dahlberg AB, Godager LH, Nizetic D, Forus A, Myklebost O. Ectopic sequences from truncated HMGIC in liposarcomas are derived from various amplified chromosomal regions. Genes Chromosomes Cancer. 2001 Jul;31(3):264-73

Hideshima T, Okada N, Okada H. Expression of HRF20, a regulatory molecule of complement activation, on peripheral blood mononuclear cells. Immunology. 1990 Mar 8;61(4):1337

Templeton JG, Cocker JE, Crawford RJ, Forwell MA, Sandlinds GP. Fc gamma-receptor blocking antibodies in hyperimmune and normal pooled gammaglobulin. Lancet. 1985 Jun 8;1(8441):1337

Petit MM, Mols R, Schoenmakers EF, Mandal N, Van de Ven WJ. LPP, the preferred fusion partner gene of HMGIC in lipomas, is a novel member of the LIM protein gene family. Genomics. 1996 Aug 15;36(1):59-64

Rogalla P, Kazmierczak B, Meyer-Bolte K, Tran KH, Bullerdiek J. The t(3;12)(q27;q14-q15) with underlying HMGIC-LPP fusion is not determining an adipocytic phenotype. Genes Chromosomes Cancer. 1998 Jun;22(2):100-4

Schoenberg Fejzo M, Ashar HR, Krauter KS, Powell WL, Rein MS, Weremowicz S, Yoon SJ, Kucherlapati RS, Chada K, Morton CC. Translocation breakpoints upstream of the HMGIC gene in uterine leiomyomata suggest dysregulation of this gene by a mechanism different from that in lipomas. Genes Chromosomes Cancer. 1996 Sep;17(1):1-6

This article should be referenced as such: