A NEW MEASUREMENT METHOD OF THE TRANSIENT THERMAL IMPEDANCE OF THE MONOLITHIC SWITCHED REGULATOR LT1073

Janusz Zarebski, Krzysztof Gorecki

Department of Marine Radioelectronics, Gdynia Maritime University
Morska 83, 81-225 Gdynia, POLAND

ABSTRACT

The transient thermal impedance $Z(t)$ of the monolithic switched regulator LT1073 is investigated in the paper. A new method of measuring this thermal parameter of the device in its real operation conditions is proposed and the proper measuring set is described, too. The results of the $Z(t)$ measurements of the device operating at it various cooling conditions are presented. Apart of this, the measuring results corresponding to the steady-state obtained both by the proposed method and by the other known methods are compared.

The most popular model of a device transient thermal impedance is of the form [1, 3]

$$Z(t) = R_{th} \left[1 - \sum_{i=1}^{N} a_i \cdot \exp \left(-\frac{t}{\tau_{thi}} \right) \right]$$

where R_{th} denotes the thermal resistance, τ_{thi} is the i-th thermal time constant and the sum of a_i factors have to be equal to 1, whereas N is the number of the thermal time constants.

The value of the inner temperature of a device can be estimated by optical, chemical or electrical methods [4]. The optical method can be used to measure temperature distribution in the device or the electronic module [5], whereas from the electrical methods [6, 7, 8, 9] only information about average temperature of the device can be obtained. Among these methods, only electrical methods are non-destructive ones and they can be used for measuring of packaged devices [10].

In the paper [2] two measuring methods of $Z(t)$ of power transistors using the cooling or the heating curve are described. Our further considerations are based on the cooling curve, according to which the transient thermal impedance is defined by

$$Z(t) = \frac{T_j(t=0) - T_j(t)}{P_{th}}$$

where $T_j(t=0)$ denotes the device inner temperature corresponding to the moment of switching-off the heating power P_{th} dissipated at the steady-state.

1. INTRODUCTION

The transient thermal impedance $Z(t)$ is one of the most important parameter of semiconductor devices and ICs. This parameter characterises the ability of a device to abstract of the heat generated in this device. If a time dependences of both the transient thermal impedance of a device and the power dissipated inside it are known, the inner device temperature T_j limiting the device SOA and influencing its reliability can be calculated. The transient thermal impedance is also an important parameter of electrothermal macromodels (ETMs) of semiconductor devices and ICs [1]. Therefore, the accuracy of estimation of the transient thermal impedance affects the accuracy of modelling nonisothermal characteristics of such devices and ICs obtained after the ETM.

In the paper [2] two measuring methods of $Z(t)$ of power transistors using the cooling or the heating curve are described. Our further considerations are based on the cooling curve, according to which the transient thermal impedance is defined by

$$Z(t) = \frac{T_j(t=0) - T_j(t)}{P_{th}}$$

where $T_j(t=0)$ denotes the device inner temperature corresponding to the moment of switching-off the heating power P_{th} dissipated at the steady-state.
used as the thermo-sensitive parameter. Note, that in the method from [16], the power is dissipated in an other way than that existing during the typical operating mode of the LT1073.

On the other hand, the way of the power dissipation can influence, even strongly, the device thermal resistance value [1, 17].

In the paper, a new method of the measurement of the transient thermal impedance of the LT1073 regulator obtained in its real operation conditions is proposed for the first time. The accuracy of this method was verified by comparison of the thermal resistance values obtained by this method and other known methods, e.g. from [16].

2. THE GENERAL CONCEPTION OF THE METHOD

In the proposed method the regulator LT1073 operates in the switched voltage stabilizer with BOOST converter which is the typical application circuit of the investigated device. The general conception of the measuring set is presented in Fig.1.

To select a thermo-sensitive parameter of the best features, the available terminal current-voltage characteristics of the LT1073 have been examined. It was noticed that six junctions are available for a user, but unfortunately, these junctions are reverse biased during normal operating conditions of the LT1073. Finally, the voltage across the forward biased p-n body diode (Dsub) operated at the constant value of the current has been chosen as a thermo-sensitive parameter.

![Block Diagram of Measuring Set](image)

Fig.1. The block diagram of the general conception of the measuring set

The measurement is realized in four stages. In the first stage (the switch S1 is opened) the calibration of the thermometric characteristic V_{AK}(T_A) of the body diode (Dsub) existing in the investigated regulator (DUT) is performed. The characteristic V_{AK}(T_A) is measured for different values of the ambient temperature T_A, at the fixed current I_M of the small value. According to the considerations included in [18], the slope F of this characteristic is determined from

\[F = \frac{V_{AK} - V_{go}}{T_A} - 1.5 \cdot \frac{k}{q} \]

where V_{AK} denotes the forward biased diode voltage corresponding to the current I_M and the temperature T_A, V_{go} = 1.206 V for silicon, T_A is the ambient temperature, k – the Boltzmann constant and q denotes the electron charge.

In the second stage, the switch S1 is permanently switching-on and switching-off. The on-time is one thousand times longer than the off-time. When switch S1 is switch-on, the electrical power is dissipated mainly in the power bipolar transistor – represented here by the switch Sa. Due to the dissipated power, the inner temperature of the LT1073 rises over the ambient temperature. When the switch S1 is switched-off, the voltage V_A across the body diode is measured. At the thermal steady-state the electrical power of the average value equal to P_0 dissipated inside the regulator (switch S1 is closed) and the voltage V_{AL} on the diode D_{AL} (switch S1 is opened) are measured. The second stage is finished, when the thermal steady-state is achieved.

During the third stage the switch S1 is finally switched-off (t = 0 is assumed) and the values V_{AL}(t) are measured until (due to the device cooling) the inner temperature equals the ambient one.

In the fourth stage, the transient thermal impedance is calculated from

\[Z(t) = \frac{V_{al}(t = 0) - V_{AL}(t)}{P_0 - V_{AL} \cdot I_M} \cdot F^{-1} \]

Due to the power dissipated in the investigated device is of the form of the rectangular wave of the frequency equal to 19 kHz [13], therefore the average value of the power is taken into account to calculate the transient thermal impedance according to Eq. (1). Such approach is correct, because as it was proved in [19], the identical time dependences of the device inner temperature are obtained when the time dependence of the power of the Heaviside function or the rectangular high-frequency wave (19 kHz) of the same value are used.

3. DESCRIPTION OF THE METHOD

To realize the proposed method, the measuring set presented in Fig.2 has been worked out and tested.

In Fig.2 the block A represents the elements of the application circuit of the LT1073, the block B represents the source of the measuring current, the block C – represents the switch S1 along with its control circuit and the block D represents the measuring amplifier.
The power transistor (switch S_a) and the body diode existing in the considered regulator, are situated between the terminals 3, 4 and 1, 5, respectively.

The regulator LT1073 operates in the typical application circuit of the switched stabilizer with the BOOST converter. The resistors R_1 and R_2 realize the feedback loop, whereas the resistor R_O is used to measure the current of the switch S_a. The power network (the block A) is also composed of the diode D_I, the impedance coil L, the output capacitance C_O and the load resistance R_L.

The source of the measuring current I_{in} is realized by the resistor R_0, situated between the terminal number 2 of the regulator and the source of the negative supply.

The main task of the transistor IRF9530 situated in the block C is to switch the supply of the regulator between two kinds of the operation conditions: the normal operating condition and the measuring one. The other elements existing in the same block ensure a change of the output voltage of the A/D converter (TTL standard) to the value which guarantees switching-on and switching-off the transistor at any value of the input voltage V_{SUP}. The voltage on the forward biased body diode is measured by the A/D converter. The measuring amplifier (block D) operating in the adder configuration is indispensable to ensure the high measurement accuracy. This adder adapts the level of the measuring voltage to A/D conversion range.

\[P_o = V_{in} \cdot I_{in} - \frac{V^2_{in}}{R_O} \left(1 + \frac{I_{in}}{T_S} \right) - I_{in}^2 \left(R_L + \frac{R_0}{T_S} \right) \] \hspace{1cm} (5)

In the method, the average power is calculated from

where V_{in}, I_{in} are the average values of the input voltage and current, respectively, V_{in}, V_D are the output voltage of the stabilizer and the voltage across the diode during its switching-on, respectively, T_S denotes the period of the signal controlling the switch, whereas t_m is the turn-on time of the switch. The values of V_{in}, V_D, T_S are obtained from oscillogram of the voltage at the terminal number 3 of the LT1073. This oscillogram has to be measured immediately before the power pulses are switched-off.

The second stage of the method is finished, when two values of the voltage V_A, measured one after another in the interval time equal to one minute, differ from each other less than 2 mV. This means that the inaccuracy of the inner temperature estimation is not greater than 1 K.

4. VERIFICATION OF THE METHOD

To verify the correctness of the proposed method, measurements of the transient thermal impedance and the thermal resistance of the LT1073 as a function of the dissipated power at various cooling conditions of this regulator, have been performed. As it results from [18], linearity of the thermometric characteristic depends on the value of the body diode current. To obtain the linear thermometric characteristic in the widest range of temperature changing, some $V_{AK}(T_A)$ dependencies at the various current values I_{M} were measured (Fig.3).

As seen, the most linear characteristic corresponds to the value of the current $I_{M} = 1 \mu A$. At this current value the highest value of the characteristic slope $F = dV_{AK}/dT$ is observed. For the lower current value ($I_{M} = 10 \mu A$) the linearity of $V_{AK}(T_A)$ characteristic is restricted by the recombination component of the body diode current, whereas the nonlinearity of the characteristic corresponding to the much higher value of current ($I_{M} = \ldots$)
100 mA) results from the existence of the diode series resistance and its dependence on temperature.

![Graph 3](image3.png)

Fig.3. The thermometric characteristics of the LT1073 body diode

In Fig.4 the time dependences of the Z(t) of the LT1073 measured by the proposed method for the various cooling conditions, at \(V_{\text{in}} = 10 \text{ V} \) are presented. The voltage regulator under test operates in the measuring set presented in Fig.2. The load resistance \(R_0 \) is equal to 150 \(\Omega \). During the investigations the LT1073 was situated on the PCB of the dimensions: 110x105 mm oriented horizontally (curve a) or vertically (curve b). Apart from this, the curve c concerns the situations, when horizontally oriented PCB is additionally situated inside the typical metal box of the dimensions 83x148x150 mm. The curve d concerns the LT1073 operating along with the aluminium heat-sink of the dimensions 18,5x11,5x1 mm adhesiving to the device case, whereas the PCB was oriented horizontally. As seen, for \(t < 10 \text{ s} \) the measured curves are practically the same. So, the cooling conditions affect the Z(t) the most visible at the steady-state.

![Graph 4](image4.png)

Fig.4. The measured dependences of the Z(t) of the LT1073 regulator for various cooling conditions

Using the Z(t) dependences from Fig.4 and the estimation method described in [20], the set of values of the coefficients existing in Eq. (1) was calculated (Table 1).

<table>
<thead>
<tr>
<th>Coefficient</th>
<th>Curve a</th>
<th>Curve b</th>
<th>Curve c</th>
<th>Curve d</th>
</tr>
</thead>
<tbody>
<tr>
<td>(R_{th}) [K/W]</td>
<td>72.1</td>
<td>68.6</td>
<td>74.3</td>
<td>58.2</td>
</tr>
<tr>
<td>(a_1) [s]</td>
<td>0.135</td>
<td>0.135</td>
<td>0.135</td>
<td>0.14</td>
</tr>
<tr>
<td>(\tau_{th1}) [s]</td>
<td>400</td>
<td>200</td>
<td>330</td>
<td>400</td>
</tr>
<tr>
<td>(a_2)</td>
<td>0.449</td>
<td>0.449</td>
<td>0.449</td>
<td>0.444</td>
</tr>
<tr>
<td>(\tau_{th2}) [s]</td>
<td>92</td>
<td>92</td>
<td>92</td>
<td>122</td>
</tr>
<tr>
<td>(a_3)</td>
<td>0.247</td>
<td>0.247</td>
<td>0.247</td>
<td>0.207</td>
</tr>
<tr>
<td>(\tau_{th3}) [s]</td>
<td>13</td>
<td>13</td>
<td>13</td>
<td>10</td>
</tr>
<tr>
<td>(a_4)</td>
<td>0.102</td>
<td>0.102</td>
<td>0.102</td>
<td>0.126</td>
</tr>
<tr>
<td>(\tau_{th4}) [s]</td>
<td>1.4</td>
<td>1.4</td>
<td>1.4</td>
<td>1.4</td>
</tr>
<tr>
<td>(a_5)</td>
<td>0.042</td>
<td>0.042</td>
<td>0.042</td>
<td>0.052</td>
</tr>
<tr>
<td>(\tau_{th5}) [s]</td>
<td>0.19</td>
<td>0.19</td>
<td>0.19</td>
<td>0.19</td>
</tr>
<tr>
<td>(a_6)</td>
<td>0.025</td>
<td>0.025</td>
<td>0.025</td>
<td>0.031</td>
</tr>
<tr>
<td>(\tau_{th6}) [s]</td>
<td>0.007</td>
<td>0.007</td>
<td>0.007</td>
<td>0.007</td>
</tr>
</tbody>
</table>

As seen, the values of three the shortest thermal time constants are independent of the cooling conditions of the investigated regulator, whereas values of \(a_i \) and \(R_{th} \) change, e.g. the most longer thermal time constant \(\tau_{th1} \) changes itself twice (see differences between curves a and d).

The results of the \(R_{th} \) measurements of the LT1073 as a function of the dissipated power obtained both: by the proposed method (triangles), the method from [16] (squares) and the infrared method (circles) are presented in Fig. 5. The investigated device was situated on the universal PCB (105x65 mm) oriented horizontally.

![Graph 5](image5.png)

Fig.5. The measurement results of the \(R_{th} \) of the LT1073 on the power dissipated

As seen, the thermal resistance values obtained by all the considered methods are nearly the same. Note, that the thermal resistance slightly decreases with an increase of electrical power. The values of the \(R_{th} \) obtained by the infrared method are lower than other results measured by the electrical methods. This is so, because in the infrared method, the case temperature of the LT1073 instead of its
Janusz Zarębski, Krzysztof Górecki
A New Method of the Transient Thermal Impedance Measurements of the Monolithic Switched …

inner one has been taken into account to obtain the \(R_{th} \) value of the considered device.

![Graph](image_url)

Fig.6. The dependence of the LT1073 thermal resistance on the regulator input voltage for its various cooling conditions

In Fig.6 the results of measurements of the dependence of the thermal resistance on the regulator input voltage \(V_{SUP} \) (see Fig. 2) at the same cooling conditions of the LT1073, as it was considered in Fig.4, are presented. As seen, the values of the \(R_{th} \) are lower of about 5%, when the PCB is oriented vertically. However, when the LT1073 is placed inside the box, an increase of its thermal resistance of about 10% is observed. Using the external heat-sink causes decreasing of the thermal resistance value of the LT1073 even more than 20%.

5. CONCLUSIONS

In the paper the new method of measuring the transient thermal impedance of the monolithic regulator LT1073 is proposed. The correctness of this method was revealed experimentally.

To describe well the \(Z(t) \) according to Eq. (2), six thermal time constants of the values from 7 ms to 400 s are needed. Changing of the PCB orientation causes the changing of the longest thermal time constant only.

The values of the thermal resistance of the LT1073 measured by the new method and by the other electrical one [16] have been compared (Fig.4). The differences are less than a few percentage, but the new method gives lower values of the \(R_{th} \).

As was shown, the value of the thermal resistance of the LT1073 depends on both the supply voltage and the manner of its mounting. The considered range of change of the supply voltage as well as the use of the metal box leads to the change of the thermal resistance of about 10%. It is worth to notice, that changing of the PCB area results in changing of the thermal resistance of the investigated device even more than 30%.

Due to the long thermal time constant characterizing the power block (typically about 10 - 20 ms) the proposed method can be used to observe the inner temperature of the regulator during its typical operation conditions, which could be used in designing the external system of the thermal protection of the LT1073.

6. ACKNOWLEDGMENTS

This work is supported by the Polish State Committee for Scientific Research in 2004-2005, as a research project No 3 T10A 032 26.

REFERENCES

Janusz Zarębski, Krzysztof Górecki

A New Method of the Transient Thermal Impedance Measurements of the Monolithic Switched …

