A new loading problem: product size reduction

François Schott,1* Sebastien Salmon,1 Dominique Chamoret,2
Thomas Baron3, Yann Meyer4

1My-OCCS, 2C Chemin de Palente, 25000 Besançon cedex, France
2ICB UMR 6303, CNRS Univ. Bourgogne Franche-Comté, UTBM, Belfort, France
3FEMTO-ST institute, univ. Bourgogne Franche-Comté, CNRS,
ENSMM Time and frequency dept. 26 Rue de l’épitaphe, 25030 Besançon cedex, France
4Univ. Bourgogne Franche-Comté, UTBM, Belfort, Francea

*To whom correspondence should be addressed; E-mail: f.schott@my-occs.fr

aResearch Associate at Sorbonne Universités, Université de Technologie de Compigne,
CNRS, UMR 7337 Roberval, Centre de recherche Royallieu, CS 60 319 Compigne cedex, France

Abstract

This paper introduces a new kind of cutting and packing problem (C.P.P.): the Product Size Reduction (P.S.R.). The cutting and packing problems are widely studied as NP-hard problems. The cutting and packing problems can be set by using different models. To solve those problems, optimization algorithms, such as conventional heuristics, meta-heuristics and tree search, are
used. In addition, those algorithms may rely on positioning strategies. Usually, the loading problems are focused on logistics problems such as container or storage loading efficiency, whereas P.S.R. problems are related to electronics, transport and energy industries. The aim of this work is to solve a real case P.S.R. problem using a Particle Swarm Optimization (P.S.O.) algorithm. This case has two main features. First, all dimensions may vary between specific boundaries. Secondly, some objects have position constraints. A discrete space model has been built to simulate the objects loading. The optimization process is based on waterfalls objective-function (W.O.F.). Constraints are ordered and tested one after another. Depending on which constraints are fulfilled or not, a particular objective function is selected from a set. The P.S.O. algorithm manages to find a solution reducing significantly the volume.

Keywords - Cutting and packing problem/Product size reduction/Waterfalls objective function/Optimization/Particle Swarm Optimization