t(4;10)(q12;q23) PDGFRA/TNKS2

Zachary R Chalmers, Garrett M Frampton, Siraj M Ali, Robert Ohgami, Curtis R Miles

Foundation Medicine, Inc. (ZRC, GMF, SMA); Stanford University School of Medicine (RO). Northwest Georgia Oncology Centers (CRM). Corresponding author: sali@foundationmedicine.com

Published in Atlas Database: April 2015
Online updated version: http://AtlasGeneticsOncology.org/Anomalies/t0410qq12q23ID1468.html
Printable original version: http://documents.irevues.inist.fr/bitstream/handle/2042/62673/04-2015-t0410qq12q23ID1468.pdf
DOI: 10.4267/2042/62673

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 2.0 France Licence. © 2016 Atlas of Genetics and Cytogenetics in Oncology and Haematology

Abstract
Comprehensive genomic profiling identifies a novel PDGFRA-TNKS2 gene fusion in a female case of myeloid neoplasm with eosinophilia. The patient was treated with imatinib, and showed a dramatic and ongoing response with no evidence of disease.

Keywords
PDGFRA; TNKS2; fusion gene; chronic myeloproliferative disease; eosinophilia.

Identity
This interchromosomal PDGFRA gene fusion is unlikely to be detected using surrogate CHIC2 deletion FISH testing.

Clinics and pathology

Disease
Myeloid neoplasm with eosinophilia

Epidemiology
One case to date: a 58-year-old female patient (Chalmers et al., 2015).

Treatment
Imatinib mesylate

Evolution
Completes remission, well tolerated response after treatment. No evidence of disease.

Genes involved and proteins

PDGFRA
Location
4q12

Protein
Member of the type III class of tyrosine kinase receptors. Functions as homo- and/or heterodimers depending on the cell type; activated by ligand-induced dimerization and autophosphorylation. Subsequent phosphorylation of its substrates initiates a variety of signal transduction cascades that promotes cell proliferation, survival and migration through the PI3K-AKT-mTOR and RAS-MAPK pathways as well as promotes activation of STAT family members (JAK/STAT) (Zamecnikova and Bahar, 2015).

TNKS2
Location
10q23.3

Protein
Belongs to the poly(ADP-ribose)polymerase (PARP) protein super family. Role in the Wnt/beta-catenin signaling pathway. Roles of TNKS1 and TNKS2 in glucose homeostasis (Guo et al., 2012).
Result of the chromosomal anomaly

Hybrid gene
Description
The hybrid gene fusion is a translocation of TNKS2 and PDGFRA with breakpoint in intron 25 and exon 12, respectively. The discovery of a novel fusion of TNKS2 with PDGFRA further demonstrates the diversity of alterations possible in these myeloid neoplasms with eosinophilia.

Detection
Comprehensive genomic profiling.

Fusion protein
See figure above.

References


This article should be referenced as such: