Leukaemia Section
Review

del(4)(q12q12) FIP1L1/PDGFRA

Adriana Zamecnikova, Soad Al Bahar
Kuwait Cancer Control Center, Dep of Hematology, Laboratory of Cancer Genetics, Kuwait (AZ, SA)

Published in Atlas Database: May 2014
Online updated version: http://AtlasGeneticsOncology.org/Anomalies/del4q12q12ID1213.html
DOI: 10.4267/2042/55380

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 2.0 France Licence.
© 2015 Atlas of Genetics and Cytogenetics in Oncology and Haematology

Abstract
Review on del(4)(q12q12) FIP1L1/PDGFRA, with data on clinics, and the genes implicated.

Identity
Other names
Interstitial 4q12 deletion
FIP1L1/PDGFR fusion in eosinophilia-associated hematologic disorders

Clinics and pathology
Disease
An interstitial deletion del(4)(q12q12) generating a FIP1L1/PDGFRA fusion gene is observed in diverse eosinophilia-associated hematologic disorders like hyperesinophilic syndrome (HES), systemic mastocytosis (SM) and chronic eosinophilic leukemia (CEL). The updated WHO classification distinguishes these myeloid and lymphoid neoplasms with eosinophilia and abnormalities of PDGFR, PDGFRB or FGFR1 as chronic eosinophilic leukemia (CEL), not otherwise specified (NOS). The FIP1L1/PDGFR fusion can be identified in patients with acute myeloid leukemia, B-cell or T-cell acute lymphoblastic leukemia or lymphoblastic lymphoma. The fusion can also be identified in myeloid sarcoma (Metzgeroth et al., 2007; Tang et al., 2012).

Phenotype/cell stem origin
FIP1L1-PDGFRA rearrangement has been found in a variety of cell lineages (neutrophils, monocytes, eosinophils, CD34+ cells, mast cells and even lymphoid) consistent with an origin in an hematopoietic stem cells or early progenitors (Gotlib and Cools, 2008).

Etiology
The cause of FIP1L1-PDGFRA associated hypereosinophilic syndrome is unknown as well as its association with predominantly male sex.

Epidemiology
FIP1L1-PDGFRA (+) eosinophilias are considered to be rare entities; however the incidence rates for molecularly defined eosinophilic disorders are not known.

Data support a FIP1L1-PDGFRA fusion incidence of approximately 10-20% among patients presenting with idiopathic hypereosinophilia (Gotlib and Cools, 2008). However, in unselected patients with eosinophilia only 3% of were found to carry the FIP1L1-PDGFRA fusion (Pardanani et al., 2004; Pardanani et al., 2006).

Clinics
Characteristic feature of PDGFR-associated disorders is eosinophil overproduction in the bone marrow resulting in increased blood eosinophils. Marked and sustained eosinophilia eventually leads to eosinophilic infiltration and functional damage of peripheral organs, most commonly the heart, skin, lungs, or nervous system.

Patients often present with hepatomegaly or splenomegaly hypercellular bone marrows with myelofibrosis, increased number of neutrophils and/or mast cells.

Serum B12 and tryptase levels may be significantly elevated (Vandenbergh et al., 2004; Gleich and Leiferman, 2009).
Treatment

FIP1L1-PDGFRα associated hypereosinophilic disorders are sensitive to treatments with tyrosine kinase inhibitors such as imatinib mesylate (imatinib). Imatinib is the first-line therapy for patients with abnormalities of PDGFRA; however, chronic eosinophilic leukemia with FIP1L1-PDGFRα is likely to be responsive also to dasatinib, nilotinib, sorafenib and midostaurin (PKC412) (Lierman et al., 2009).

Prognosis

Patients with hypereosinophilic syndrome historically carried a poor prognosis before the successful therapeutic application of tyrosine kinase inhibitors. Targeted therapy has dramatically changed the prognosis of patients carrying the FIP1L1-PDGFRα fusion which show an excellent response to low-dose imatinib. Treatment with low-dose imatinib (100 mg/d) produced complete and durable responses with normalization of eosinophilia. Importantly, these remissions appear to be durable with continued imatinib therapy in a high proportion of patients (Barraco et al., 2014).

Acquired resistance is exceedingly rare; the T674I mutation in the ATP-binding region of PDGFRA (mutation of the threonine at position 674) is the most common. Interestingly, the T674I mutation that is analogous to the T315I mutation of BCR-ABL1 in chronic myeloid leukemia also confers imatinib resistance (Cools et al., 2003; Jain et al., 2013). For refractory disease, interferon-α may be a therapeutic option.

Cytogenetics

Note

The cryptic interstitial deletion on chromosome band 4q12 leading to FIP1L1-PDGFRα fusion is quite unique as it is generated by a cryptic chromosomal deletion, rather than a translocation (Gotlib and Cools, 2008).

Cytogenetics morphological

Because FIP1L1-PDGFRα is generated by a cryptic deletion at 4q12 that is only 800 kb in size, it remains undetected with standard cytogenetics. Therefore; most of the patients with the fusion have an apparently normal karyotype.
Occasional patients have had a chromosomal rearrangement with a 4q12 breakpoint, such as t(1;4)(q44;q12), which ultimately led to the identification of the fusion gene or t(4;10)(q12;p11) (Cools et al., 2003; Gotlib et al., 2004).

Cytogenetics molecular

One of the best techniques to detect the presence of the FIP1L1-PDGFR fusion gene is using triple-color FISH probes hybridizing to the region between the FIP1L1 and PDGFR genes incorporating the CHIC2 (cysteine-rich hydrophobic domain 2) gene.

A more sensitive technique is the use of reverse-transcription polymerase chain reaction (RT-PCR) (La Starza et al., 2005) or quantitative RT-PCR methods, used for monitoring therapy response to tyrosine kinase inhibitors.

Variants

A few other variant PDGFR fusion genes have been described: t(4;22)(q12;q11)/BCR-PDGFR, t(2;4)(p24;q12)/STRN-PDGFR, ins(9;4)(q33;q12q25)/CDK3RAP2-PDGFR, complex karyotype/KIF5B-PDGFR and t(4;12)(q12;p13)/ETV6-PDGFR (Gleich and Leiferman, 2009). The involvement of FIP1L1 was described in a t(4;17)(q12;q21) with FIP1L1/RARA fusion in a patient with juvenile myelomonocytic leukemia (Shah et al., 2014).
PDGFRA is involved in the pathogenesis of various disorders, including cancer.

FIP1L1

Location
4q12

Note
factor interacting with PAPOLA and CPSF1

DNA/RNA
4 distinct isoforms; alternative splicing results in multiple transcript variants.

Protein
pre-mRNA 3'-end-processing factor; 520 amino acids. FIP1 belongs to the FIP1 family. It has RNA binding protein kinase activity as a component of cleavage and polyadenylation specificity factor (CPSF) complex. Plays a key role in polyadenylation of the 3' end of mRNA precursors and in the transcriptional process. FIP1L1 is predicted to be under the control of a ubiquitous promoter. Many additional functions of the protein are largely unknown (Gotlib et al., 2004).

Result of the chromosomal anomaly

Hybrid gene

Description
In-frame fusion of the 5' part of FIP1L1 to the 3' part of PDGFRA. The generation of the fusion between the 5' part of the FIP1L1 gene and the 3' part of the PDGFRA gene is the consequence of a deletion of the 800 kb genomic region between the two genes on 4q12.

Several genes between FIP1L1 and PDGFRA have been identified: LNX1 (the ligand of numb-protein X 1), the hypothetical protein LOC402176 (LOC402176), CHIC2 (cysteine-rich hydrophobic domain 2) and the homeobox protein GSH-2 (GSH2). While breakpoints in FIP1L1 are scattered over a region of 40 kb (introns 7-10), breakpoints within the PDGFRA gene are tightly clustered and are always within exon 12, encoding the juxtamembrane region (JM). Truncations of the JM region invariably results in the removal of part of the juxtamembrane domain and generation of in-frame fusion transcripts (Cools et al., 2003; Vandenberghe et al., 2004). Rarely, FIP1L1 breakpoint is located outside of the common FIP1L1 breakpoint regions (Lambert et al., 2007).

Transcript
5FIP1L1-3'PDGFRA; no reciprocal PDGFRA-FIP1L1 fusion gene can be detected as the fusion is the consequence of an interstitial deletion and not a reciprocal translocation. As the normal splice site at 5' part of exon 12 of PDGFRA is deleted, cryptic splice sites in FIP1L1 introns or within exon 12 of PDGFRA are used to generate in-frame FIP1L1-PDGFRA fusions (Gotlib and Cools, 2008).

Fusion protein

Description
The FIP1L1-PDGFRA protein is made by the first twelve exons of FIP1L1 and from truncated exon 12 (containing the last 17 amino acids) to exon 23 of PDGFRA. The FIP1L1-PDGFRA fusion protein is a constitutively activated tyrosine kinase that joins the first 233 amino acids of FIP1L1 to the last
523 amino acids of PDGFRA (Gotlib and Cools, 2008).

Oncogenesis

An interstitial deletion on chromosome 4q12 site brings the normally distant PDGFR and FIP1L1 genes into proximity generating a hybrid FIP1L1-PDGFR gene. In the translated protein, the juxtamembrane domain of PDGFRα that is known to serve an autoinhibitory function is truncated and became under control of the ubiquitous FIP1L1 promoter resulting in its constitutive kinase activation. Dysregulated tyrosine kinase activity leads to proliferation of multiple myeloid lineages via activation of several pathways. The STAT1/3 and STAT5 (signal transducers and activators of transcription) transcriptional factors appear to be activated either directly or via interaction with Jak (Janus activated kinase) pathways. However, the exact mechanism, by which FIP1L1-PDGFR affects the development of HES/CEL and why preferentially affects eosinophils remains unclear. Mouse models of FIP1L1-PDGFR induced disease revealed that FIP1L1-PDGFR expression induce a myeloproliferative phenotype without eosinophilia. Therefore, it is likely that FIP1L1-PDGFR expression alone is not sufficient to cause eosinophilia and additional processes such as cooperation with nuclear factor-kB and IL-5 signaling are required in differentiation towards the eosinophil lineage (Yamada et al., 2006; Montano-Almendras et al., 2012).

References

Gotlib J, Cools J. Five years since the discovery of FIP1L1-PDGFRα: what we have learned about the fusion and other molecularly defined eosinophilias. Leukemia. 2008 Nov;22(11):1999-2010

PDGFRA rearrangement. Blood. 2013 Nov 7;122(19):3387-8

This article should be referenced as such: