Leukaemia Section
Short Communication

t(9;13)(p12;q21) PAX5/DACH1

Jean-Loup Huret

Genetics, Dept Medical Information, University of Poitiers, CHU Poitiers Hospital, F-86021 Poitiers, France (JLH)

Published in Atlas Database: January 2014

Online updated version: http://AtlasGeneticsOncology.org/Anomalies/t0913p12q21ID1560.html
DOI: 10.4267/2042/54017

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 2.0 France Licence.
© 2014 Atlas of Genetics and Cytogenetics in Oncology and Haematology

Abstract
Short communication on t(9;13)(p12;q21) PAX5/DACH1, with data on clinics, and the genes implicated.

Clinics and pathology

Disease
B-cell acute lymphoblastic leukemia (B-ALL)

Epidemiology
Only one case to date, a 5-year old boy with a CD10+ ALL (Nebral et al., 2009).

Prognosis
The patient was noted at an intermediate risk, reached complete remission, and was alive at 23 months+.

Genes involved and proteins

PAX5

Location
9p13.2

Protein
391 amino acids; from N-term to C-term, PAX5 contains: a paired domain (aa: 16-142); an octapeptide (aa: 179-186); a partial homeodomain (aa: 228-254); a transactivation domain (aa: 304-359); and an inhibitory domain (aa: 359-391). Lineage-specific transcription factor; recognizes the concensus recognition sequence GNCCANTGAAGCGTGAC, where N is any nucleotide. Involved in B-cell differentiation.

DACH1

Location
13q21.33

DNA/RNA
2 splice transcript variants.

Protein
708 and 760 amino acids (aa). From N-term to C-term (for the 760 aa form), contains a Poly-Ala (aa 61-68), three Poly-Gly (aa 74-89; aa 92-103; aa 116-123), a Poly-Ser (aa 142-165), a Dachshund domain motif N (aa 191-277), an interaction region with SIX6 (14q23.1) and HDAC3 (5q31) (aa 191-386), two Poly-Ala (aa 327-335; aa 469-472), a Dachshund Domain motif C (aa 618-698), an interaction region with SIN3A (15q24.2) and SIN3B (19p13.11), (aa 629-708), and a Coiled coil domain (aa 632-720) (Swiss-Prot).
DACH1 is a tumor suppressor. DACH1 downregulates EGFR (7p11.2), CCND1 (11q13), ESR1 (6q25.1) and AR (Xq12), and also TGFβ1 (19q13.2), through interaction with SMAD4 (18q21.2) and NCO1 (17p11.2). DACH1 coprecipitates the histone deacetylase proteins (HDAC1, HDAC2, and NCO1). DACH1 transcriptionally represses JUN (1p32.1), and FOS (14q24.3), and DACH1 inhibits DNA synthesis and cellular proliferation (Wu et al., 2007).

DACH1 is involved in the PAX-EYA-SIX-DACH regulatory pathway (eyeless (PAX6), sine oculis (SIX1, SIX2, SIX3, SIX4, SIX5, SIX6), eyes absent (EYA1, EYA2, EYA3, EYA4), and dachshund (DACH1-2)). CREBBP (16p13.3) is involved in this process.

DACH1 is involved in the development of the neocortex and the hippocampus, is expressed by neural stem cells during early neurogenesis, and also in adult neurogenesis following brain ischemia (Honsa et al., 2013). DACH1 inhibits breast cancer cellular proliferation via cyclin D1 (Nan et al., 2009). DACH1 suppresses epithelial-mesenchymal transition via repression of cytoplasmic translational induction of SNAI2 (8q11.21) by inactivating YBX1 (1p34.2). DACH1 blocks YBX1-induced mammary tumor growth (Wu et al., 2014). DACH1 expression appears to be predictive of good prognosis in oestrogen receptor (ER) positive breast cancer (Powe et al., 2014). DACH1 inhibits prostate cancer cellular DNA synthesis and growth (Wu et al., 2009). DACH1, BMP7 (20q13.31), and MECOM (EVII, 3q26.2) were up-regulated in advanced-stage ovarian cancers, and inhibited TGF-beta signaling in these cancers associated with TGFβ resistance (Purcell et al., 2005).

DACH1 is frequently methylated in hepatocellular carcinoma and DACH1 expression is regulated by promoter hypermethylation.

Down-regulation of DACH1 is a novel mechanism for gaining resistance to the TGFβ1 (19q13.2) antiproliferative signaling (Zhu et al., 2013). DACH1 is also frequently methylated in human colorectal cancer and methylation of DACH1 may serve as a good marker in colorectal cancer (Yan et al., 2013). DACH1 regulates FGF2 (4q27)-mediated tumor-initiating activity of glioma cells and inhibits formation of tumor-initiating spheroids of glioma cells (Watanabe et al., 2011).
References


This article should be referenced as such: