A new type of entombment of *Peronopsis* (Agnostida) in a hyolithid conch

Oldřich FATKA
Vladislav KOZÁK

Abstract: An enrolled exoskeleton of the holaspid specimen of a tiny agnostid *Peronopsis integra* (BEYRICH, 1845) entombed inside a conch of the hyolithid *Buchavalites sp.* is described from the middle Cambrian (Drumian) Jince Formation of the Příbram-Jince Basin (Czech Republic). The agnostid is associated with an ichnofossil of the feeding trace classified as *Arachnostega*-type behaviour. The enrolled attitude of the agnostid exoskeleton suggests that the specimen is a carcass rather than moult. Either the storm disturbance and/or well-protected source of food hypotheses could explain the entombed agnostid. This additional example supports a benthic mode of life in the agnostid *P. integra*. The studied association of feeding tunnels of an unknown *Arachnostega*-strategist and *Peronopsis* preserved inside a hyolithid conch is a case of "frozen" behaviour.

Key Words: Agnostid palaeoecology; trilobites; Drumian; Cambrian; Jince Formation; Barrandian area; Příbram-Jince Basin; Czech Republic.

Citation: FATKA O. & KOZÁK V. (2014).- A new type of entombment of *Peronopsis* (Agnostida) in a hyolithid conch.- *Carnets de Géologie* [Notebooks on Geology], Brest, vol. 14, n° 10, p. 191-198.

Résumé : Un nouveau type d'enfouissement pour *Peronopsis* (Agnostida) dans une coquille d'hyolithide.- Un exosquelette recroquevillé d'un spécimen holaspide d'un petit trilobite agnostide, *Peronopsis integra* (BEYRICH, 1845), a été observé enfoui à l'intérieur de la coquille de l'hyolithide *Buchavalites sp.* provenant de la Formation de Jince attribuée au Cambrien moyen (Drumien) du Bassin de Příbram-Jince (République tchèque). L'agnostide est associé à une trace fossile en lien avec une activité d'alimentation, attribuée à un comportement de type *Arachnostega*. La disposition recroquevillée de l'exosquelette de l'agnostide suggère que ce spécimen est une carcasse plutôt qu'une mue. L'hypothèse d'une perturbation causée par une tempête et/ou celle d'une source de nourriture bien abritée permettraient d'expliquer l'agnostide enfoui. Ce nouvel exemple confirme un mode de vie benthique chez l'agnostide *P. integra*. L'association étudiée de terriers alimentaires d'un stratège inconnu de type *Arachnostega* et d'un *Peronopsis* préservé à l'intérieur de la coquille d'un hyolithide est un exemple d’action figée.

Mots-clés : Paléoécologie des agnostides ; trilobites ; Drumien ; Cambrien ; Formation de Jince ; Aire Barrandienne ; Bassin de Příbram-Jince ; République tchèque.

Introduction

The conchicolous habit (= "the use by other animals of shells as residences after the original builders have died" following VERMEIJ, 1987, p. 240) is very rare in the fossil record. Similarly rare is also inquillism of invertebrates (e.g., FRAAYE & JÄGER, 1995; BOUCOT & POINAR, 2010; KLOMPMAKER & FRAAYE, 2012). Possible early Palaeozoic examples have been reported from the Cambrian, Ordovician and Silurian of Laurentia (U.S.A.; e.g., BRANDT, 1993; DAVIS et al., 2001), Baltica (Sweden; e.g., ZWANZIG & LIEBERMANN, 2012) and West Gondwana (Czech Republic and Portugal; e.g., FATKA et al., 2008a; GUTIÉRREZ-MARCO et al., 2009; FATKA & BUDIL, 2014).

The oldest fossils documenting conchicolous habit of an unknown organism were announced by UNAL and ZINSMEISTER (2006) from the Early Cambrian of California; somewhat younger examples of entombed agnostids and eodiscid trilobites were described from the middle Cambrian of the Burgess Shale, British Columbia (CHATTERTON et al., 2003) and from the Jince Formation of the Czech Republic (FATKA et al., 2009; FATKA & SZABAD, 2011). Other example of a possible conchicolous habit of trilobites preserved inside of large hyolithids was discussed by FATKA et al. (2008a) and VALENT et al. (2008) based on fossils from the Buchava Formation (Drumian). Clusters of trilobites, preserved prone or partly enrolled, have been described under disarticulated skeletal elements of large trilobites were described from Middle Ordovician sediments of northern Portugal (GUTIÉRREZ-MARCO et al., 2009) and the Czech Republic (FATKA

1 Charles University, Institute of Geology and Palaeontology, Albertov 6, CZ–128 43, Prague 2 (Czech Republic)
fatka@natur.cuni.cz

2 K Moravíně 11/1689, CZ–190 00, Prague Vysočany (Czech Republic)
vlada.kozak@tiscali.cz

Published online in final form (pdf) on July 3, 2014
[Editor: Bruno GRANIER]
Diverse trilobites entombed inside cephalopod shells are known from the Middle Ordovician of the Czech Republic (Fatka, Budil, Kraft unpublished observation), from the Upper Ordovician of the U.S.A. (e.g., Davis et al., 2001), as well as from the Silurian of the U.S.A., the Czech Republic (e.g., Davis et al., 2001; Budil et al., unpublished observation) and also from Sweden (Zwanzig & Liebermann, 2012). Brandt (1993, Fig. 3.6) figured an enroled trilobite preserved inside a gastropod body chamber from the Upper Ordovician of the U.S.A.

Ural and Zinsmester (2006) suppose that the hyolith conchs were used as shelters and interpreted these finds as possible evidence of a strategy to avoid predation. Chatterton et al. (2003), Valent et al. (2008), Fatka et al. (2009), Gutiérrez-Marco et al. (2009) and Fatka & Szabad (2011) speculated that agnostids and some trilobites might have entered diverse empty tubes and other restricted spaces for a specific purpose, most likely to feed (scavenge on remnants of a dead priapulid worm, hyolithid or large trilobite) or to hide. Other possible explanation of arthropods include post-mortem transportation or moulting (e.g., Davis et al., 2001; Schultz, 2002; Friaaie & Penning, 2006). Davis et al. (2001) and Fatka et al. (2009) documented two rare finds of comparatively small hyolithid conchs containing articulated agnostids in prone attitude from the richly fossiliferous Paradoxides (Paradoxides) paradoxissimus gracilis Biozone of the middle Cambrian Jince Formation. The aim of the present contribution is to describe a nearly complete hyolithid conch with an entombed enroled agnostid; this specimen was recently found by the junior author at the Vystrkov Hill near Jince (see Fatka & Szabad, 2014, outcrop 6 in Fig. 1). The studied sample is housed in the collections of the Czech Geological Survey, Klárov 3, Praha 1, CZ-118 21, Czech Republic under the designation CW 010. Fatka and Szabad (2011), Zwanzig and Liebermann (2012) and Fatka and Budil (in press) discussed the feeding, storm disturbance and hiding hypotheses.

Geological setting and fossil association

The fossil comes from an extensive quarry in green, fine-grained greywacke with thin lenses of shale of the middle Cambrian Jince Formation was exploited at the north-eastern slope of Vystrkov Hill near Jince (49°46’45.922”N, 13°58’2.379”E) from 1970 to the 90’s. Lower levels of the quarried succession exposed deposits of the Paradoxides (Paradoxides) paradoxissimus gracilis Trilobite Biozone (Fatka & Szabad, 2014). The associated skeletal fauna has been discussed by Fatka et al. (2004, 2009), Geyer et al. (2008), and Fatka and Szabad (2014). It consists of abundant trilobites (e.g., Conocoryphe, Paradoxides, Ptychoparia), agnostids (Peronopsis, Hypagnostus and Palagnostus), echinoderms (e.g., Akadocrinus, Vyscystis, Etoctocystis, Stromatocystes), bivalved arthropods (Tuzoia, Liangshannella and Konicekion) and hyolithids (e.g., Jincelites, Buchavalites) associated with rare brachiopods, gastropod-like molluscs, fossils distantly resembling Selkirkia and ichnofossils.

Stratigraphy and palaeoecology

Occurrence of the zonal paradoxidid trilobite Paradoxides (P.) paradoxissimus gracilis and the index agnostid Hypagnostus parvifrons makes it possible to correlate a part of the Jince Formation exposed at Vystrkov Hill with middle and higher levels of the Baltic Paradoxides (P.) paradoxissimus Biozone (Axheimer & Ahlberg, 2003; Høyberg & Bruton, 2008; Weidner & Nielsen, 2013), as well as with the Caesaraugustian Regional Stage in the West Gondwanan chronostratigraphic sequence (see Geyer et al., 2008; Gozalo et al., 2011). These levels correspond to the Drumian Stage of Cambrian Series 3.

Articulated exoskeletons of the tiny agnostid Peronopsis integra are abundant in the higher levels of the Paradoxides (Eccaparadoxides) pusillus Biozone and in particular in the Paradoxides (Paradoxides) paradoxissimus gracilis Biozone of the Jince Formation (see Šnaídr, 1958; Fatka et al., 2004). Similarly, conchs of the small to middle-sized hyolithid genus Buchavali
tes Mārek, 1975, have been found in the Paradoxides (Paradoxides) paradoxissimus gracilis Trilobite Biozone (because of poor preservation, these hyolithids were classified as Orthotheca sp. A by Fatka et al., 2004, tab. 5).

Palaeoecology of agnostids

Some authors provided arguments for a planktonic habit (e.g., Robison, 1972, 1975), while others suggested an epifaunal mode of life (Pek, 1977). However, evidence for a benthic mode of life in adult agnostids is accumulating (e.g., Jago, 1974; Müller & Walossek, 1987; Chatterton, 2001; Chatterton et al., 2003; Fatka & Szabad, 2011; Esteve & Zamora, 2014).

Palaeoecology of hyolithids

Dzik (1981) favoured a pelagic mode of life for hyolithids, but also pelagic, nektic and benthic habits have been suggested (e.g., Fisher, 1962). Many of authors accepted with a vagrant benthic habit (e.g., Duncan, 1957; Yochelson, 1957, 1961; Mārek & Galle, 1976, Mārek & Yochelson, 1976; Valent et al., 2011; Martí Mus et al., 2014). Hyolithids have never been considered as infaunal organisms.

Description

All the specimens are preserved in a small slab of fine shale measuring 22 × 19 mm. The rock surface bears 1) a nearly complete hyolithid conch, 2) an isolated cephalic shield of a small specimen of Peronopsis integra (CPer at Fig. 1.B), and 3) one ossicle of indeterminable

Both ventral surface and the visible dorsal surface of the hyolithid conch are slightly compressed but uncrushed. The external surface of the conch is generally smooth; several very fine transverse growth-lines (tgl in Fig. 1.B) and fine narrowly spaced longitudinal sculptural elements (lse in Fig. 1.B) are seen in several areas; no trace of muscle scars is visible.
Within the conch a specimen of *Peronopsis integra* is apparent. The external mould of the agnostid pygidium does not show any traces of crushing or biting on its exoskeletal surface. However, antero-laterally the surface of the pygidial shield bears at least four tiny holes of irregular shape (?Tu in Fig. 1.B). The pygidium measures about 2.25 mm in sagittal length and 2.35 mm in maximum width. The axial part of the pygidial shield includes pressed remains of a glabella (gl in Fig. 1.B). The external surface of the second thoracic segment (th in Fig. 1.B) is preserved at the anterior pygidial margin. The agnostid exoskeleton lies with its pygidial dorsal side directed to the ventrum of the hyolith conch (Fig. 1.E). Tiny remains of the glabella are visible inside the pygidial axis and articulated remains of the second thoracic segment indicates that all these remains belong to a complete enrolled specimen with the dorsal side of the cephalon pointing to the dorsal side of the hyolithid conch (Fig. 1.E). Total length of the articulated prone agnostid is estimated to be about 5 mm.

The generally smooth external surface of the hyolithid conch bears several fine ribbon-like particles of diverse width and length. The presence of three longer ribbon-like elements behind the enrolled agnostid exoskeleton in the very narrow apical portion of the hyolithid conch (Tu1, Tu2 and Tu3 in Fig. 1.B) excludes the assignment of these particles to agnostid faeces. However, the irregular ribbon-like elements could represent either (1) scattered hyolithid soft parts (*e.g.*, remains of the gut filling), or (2) they could belong to tunnels of a tiny burrow system.

Diverticulate character combined with diverse width and diagonal course of these elements in the apertural sector of the conch (Tu1, Tu2 and Tu4 in Fig. 1.B) excludes the interpretation of the ribbon-like particles as hyolithid gut fillings.

(2) *Fatka et al.* (2011, p. 375, Fig. 6) reported a rare occurrence of simple to divergent tunnels (= simply looping or ramifying systems) inside diverse invertebrate skeletons from the Barrandian area, including the middle Cambrian Jince Formation. These tunnels presumably represent early "growth stage" of an organism actively searching for food inside skeletons lying on the seafloor or partly embedded in it. Such tunnelling was proposed for the *Arachnostega*-type behaviour (strategy) and is classified as feeding traces of the ichnogenus *Arachnostega* (see *Bertling*, 1992; *Fatka et al.*, 2011).

We prefer to ascribe the fine ribbon-like and ramifying tunnels to traces of the *Arachnostega*-type behaviour by an unknown organism (*Errant polychaetes*, see *Bertling*, 1992, p. 182). The tunnel by burrowing organism fed on decaying soft tissue of the hyolithid; the general arrangement of these tunnels obviously copies the disposition of the gut inside a hyolithid conch (see *Devaere et al.*, 2014).

Discussion

Very good, nearly 3D, preservation of the agnostid pygidial shield, associated with parts of the tightly joined second thoracic segment and the remains of the glabella, proves the interpretation that the agnostid is an enrolled carcass rather than a moult. Accordingly, it could be concluded that, when the agnostid entered the hyolithid conch, it was resting on the sea floor. Unfortunately, the incomplete preservation in a very small rock sample makes it impossible to decide if the hyolithid was situated in its usual posture with the ligula resting on the sea floor or upside down. The orientation and disposition of the enrolled agnostid exoskeleton differs from entombed agnostids described earlier (*cf.* Fig. 1.C-E).

Similarly, as in other finds of entombed agnostids and eodiscid trilobites, it is not possible to give the exact reason why *Peronopsis integra* entered the restricted space within the hyolithid conch. However, at least four different hypotheses for an agnostid entering such a specific environment were proposed by *Chatterton et al.* (2003) and *Fatka et al.* (2009):

(1) Hiding place. An empty conch provided a hiding place (sheltering) for the small animals during their usual activity;

(2) Disturbance. A hyolithid conch, either with or without the soft tissue, could be an ideal place to survive periods of seafloor disturbance;

(3) Food. A hyolithid conch with decaying soft parts within could provide a well-protected source of food for small benthic scavengers and/or

(4) Moulting in shelter.

(1) Hiding place. Scars attributed to sub-thal predation have been only rarely documented in agnostids (*Babcock*, 2003). However, the recently described articulated specimen of *Phaunagnostus prantli* with several small scars on the posterior pygidial border (*Fatka et al.*, 2009) documents the presence of potential predators of small benthic animals in the middle Cambrian of the Příbram-Jince Basin (*compare Haug et al.*, 2012).

Occurrence of potential predators supports the possibility of hiding during usual activity.
(2) Disturbance. Entombed specimens of *Peronopsis* supports the earlier speculation that some taxa of small agnostids voluntarily entered empty spaces inside various invertebrate skeletons lying on the bottom (e.g., Chatterton et al., 2003; Fatka & Szabad, 2011). The enrolled attitude of the exoskeleton favours the seafloor disturbance hypothesis.

(3) Food. Presence of a simply looping to ramifying tunnel system of an *Arachnostega*-strategist proves that the hyolithid conch contained edible soft tissue. The co-occurrence of feeding tunnels and the enrolled agnostid *Peronopsis integra* inside the hyolithid conch makes possible the explanation, that the agnostid was attracted to feed on the hyolithid carrion inside the conch. Consequently, the hypothesis of a well-protected source of food for small benthic scavengers is suitable.

Four tiny holes visible at the pygidial surface (Tu in Fig. 1.B) imply that when the producer of the feeding tunnels entered the hyolithid conch, the enrolled agnostid had already been entombed inside this restricted space.

Based on the above discussion, the origin of the described association of the tunnel system of *Arachnostega*-strategist and *Peronopsis* inside a hyolithid could be explained by the following two sequences:

Figure 2: Two simplified sequences leading to possible origin for the association of feeding tunnels produced by *Arachnostega*-strategist and *Peronopsis* inside hyolithid conch.
Sequence I

- the agnostid in prone attitude entered the restricted space inside the hyolithid conch lying on the sea bottom to feed or to hide, or both (A in Fig. 2),
- the conch with the entombed prone agnostid was partly and/or completely filled by clastic material (B in Fig. 2). Possibly due to physical disturbance, the conch was partly or completely embedded (C in Fig. 2). This explains the enrollment and the slightly rotated orientation of the agnostid exoskeleton as a protective reaction, which was associated with a slight rotation of the enrolled agnostid (D in Fig. 2),
- *Arachnostega*-strategist entered the partly to fully embedded conch to feed on soft parts of the hyolithid or agnostid carcasses, or on both (E in Fig. 2),
- the tunnel burrowing organism feeding on soft tissue of the hyolithid carion possibly used the hyolithid gut to burrow easily through the hyolithid conch (F in Fig. 2).

Sequence II

- agnostid in enrolled attitude entered the restricted space inside the hyolithid conch lying on the sea bottom to feed or to hide or both (G in Fig. 2),
- the conch with entombed agnostid in enrolled attitude was partly and/or completely filled by clastic material (G in Fig. 2),
- agnostid slightly rotated due to partial or complete embedding of the conch (G in Fig. 2).

The rest of this sequence is the same as in the sequence I.

<table>
<thead>
<tr>
<th>Specimen</th>
<th>Entombed species</th>
<th>Entombed inside</th>
<th>Length of conch</th>
<th>Max width of conch / tube</th>
<th>Width of conch / tube in the place with entombed specimen</th>
<th>Width of entombed specimen</th>
<th>Width of entombed specimen /width of conch or tube</th>
</tr>
</thead>
<tbody>
<tr>
<td>VV 001A, B</td>
<td>Peronopsis integra</td>
<td>Hyolithid conch (Jincelites)</td>
<td>16 mm</td>
<td>3.9 mm</td>
<td>2.05-3.00 mm</td>
<td>1.65 mm</td>
<td>55-80 %</td>
</tr>
<tr>
<td>VV 002A, B</td>
<td>Peronopsis integra</td>
<td>Hyolithid conch (Buchavalites)</td>
<td>23 mm</td>
<td>5.5 mm</td>
<td>1.85-2.05 mm</td>
<td>1.65 mm</td>
<td>80-89 %</td>
</tr>
<tr>
<td>CW 010</td>
<td>Peronopsis integra</td>
<td>Hyolithid conch (? Buchavalites)</td>
<td>> 23 mm</td>
<td>> 3.3 mm</td>
<td>2.6 mm</td>
<td>2.3 mm</td>
<td>88 %</td>
</tr>
<tr>
<td>ROM 543455</td>
<td>Ptychagnostus preacurrens</td>
<td>Priapulid tube (Selkirkia)</td>
<td>32.9 mm</td>
<td>6.0 mm</td>
<td>5.0-5.3 mm</td>
<td>3.9 mm</td>
<td>76 %</td>
</tr>
<tr>
<td>ROM 54344</td>
<td>Pagetia bootes</td>
<td>Priapulid tube (Selkirkia)</td>
<td>> 29 mm</td>
<td>5.7 mm</td>
<td>5.5 mm</td>
<td>?</td>
<td>-</td>
</tr>
<tr>
<td>ROM 54346</td>
<td>Pagetia bootes</td>
<td>Priapulid tube (Selkirkia)</td>
<td>> 24 mm</td>
<td>5.7 mm</td>
<td>4.4-4.8 mm</td>
<td>2.8 mm</td>
<td>61 %</td>
</tr>
</tbody>
</table>

Table 1: Dimensions of entombed agnostids, eodiscid trilobites, hyolithid conchs and tubes of priapulid worm.

Earlier described entombed specimens of the eodiscid trilobite *Pagetia bootes* as well as the agnostid *Ptychagnostus preacurrens* and *Peronopsis* integra supposedly entered the restricted space inside priapulid worms and hyolithid conchs on its own as part of their normal behaviour (Chatterton et al., 2003; Fatka et al., 2009). The width of entombed eodiscid trilobites and agnostids ranges from 1.65 to 3.9 mm and reaches 55-89 % of width of the priapulid tube and hyolith conch in the place of entombment (Table 1). Width of the *Peronopsis* integra described here fits with the earlier observed range, as it reaches 89 % of the hyolith width in the place of entombment.

Conclusions

An enrolled agnostid specimen preserved inside a hyolithid conch represents a new type of entombment. The enrolled attitude of this agnostid *Peronopsis* prioritizes the seafloor disturbance hypothesis for explanation of entombed of this specimen. This fits well with the earlier observations that some taxa of small agnostids voluntarily entered empty spaces inside various invertebrate skeletons lying on the bottom (e.g., Chatterton et al., 2003; Fatka & Szabad, 2011).

The described association of feeding tunnels produced by an *Arachnostega*-strategist and *Peronopsis* inside of a hyolithid conch is designated as a case of "frozen" behaviour sensu Boucot (1990) and Boucot and Poinar (2010).

Acknowledgements

This research was supported by the project PRVOUK P44 of the Ministry of education, youth and sports of the Czech Republic. We would like to express our thanks to Dr. Joachim Haug (LMU Munich, Germany), Professor Arthur J. Boucot (Oregon State University Corvallis, U.S.A.) and Dr. Michal Raccoński (University of Silesia Sosnowiec, Poland) for helpful comments and suggestions, which improved the clarity of the paper. Dr. A.W.A. Rushton (BMNH London, Great Britain) kindly read and helped improve the manuscript. Dr. Petr Budil (Czech Geological Survey, Prague) and Mgr. Martina Aubrechtová (Charles University, Prague) kindly commented on an earlier version of this manuscript. Mgr. Lukáš Labl (Charles University, Prague) is acknowledged for help with photography.

196
Bibliographic references

Marek L. & Galle A. (1976).- The tabulate coral Hydrotrugulum, an epizoan with bearing on hyolithid ecology and systematic.- Lethaia, Oslo, vol. 9, n° 1, p. 51-64.

Šnajdr M. (1958).- Trilobiti českého středního kambria (The trilobites of the Middle Cambrian of Bohemia).- Rozpravy Ústředního Ústavu geologického, Praha, vol. 24, 280 p. (Pls. I-XLVI) [In Czech with English summary]

