Lymphomatoid papulosis (LyP) with 6p25.3 rearrangement

Laszlo J Karai, Andrew L Feldman

Aurora, DermDx Miami, 16250 NW 59 Ave., Suite 206, Miami Lakes, FL 33014, USA (LJK), Department of Laboratory Medicine and Pathology, College Of Medicine, Mayo Clinic, 200 First Street SW, Hilton Building, Room 8-00F, Rochester, MN 55905, USA (ALF)

Published in Atlas Database: September 2013
DOI: 10.4267/2042/53488

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 2.0 France Licence. © 2014 Atlas of Genetics and Cytogenetics in Oncology and Haematology

Abstract
Review on lymphomatoid papulosis (LyP) with 6p25.3 rearrangement, with data on clinics, and the genes implicated.

Clinics and pathology

Disease
Lymphomatoid papulosis (LyP)

Phenotype/cell stem origin
Mature (peripheral) T cell.

Etiology
No etiologic factors are known.

Epidemiology
All reported cases occurred in elderly adults (67-88 years, mean 75 years) with strong male predominance (9M:2F) (Karai et al., 2013).

Clinics
The lesions are usually restricted to a single body area. Affected sites included the head and neck, upper torso, and extremities. Lesions ranged in size from 0.3 cm to 1.0 cm in diameter and had variable scale but no ulceration. No patient had disseminated cutaneous disease or clinical evidence of extracutaneous disease.

Pathology
The histological features are remarkably consistent and different from the other types of cutaneous LyPs. Salient features include: prominent dermal nodule with the overlying epidermis showing pagetoid reticulosis-like histological changes. Marked periadnexal involvement is sometimes present. Tumor cells are mostly small to medium-sized with markedly irregular nuclei. Lesions show high mitotic rate and the presence of frequent apoptotic bodies. Necrosis is absent. No significant amount of eosinophils and neutrophils are present.

Treatment
No established treatment. Most of the lesions involute spontaneously and without therapy. Consideration to radiation, injection with kenalog or excision can be made depending on individual presentation.

Evolution
Similar to other types of LyP, recurring-remitting course.

Prognosis
According to the series of 11 patients the prognosis is good (Karai et al., 2013).
Lymphomatoid papulosis with 6p25.3 rearrangement. Low power H&E image shows a prominent lymphoid nodule in the dermis (A) with characteristic pagetoid reticulosis-like epidermal involvement (B) at medium power. Inset in (A) shows high power image of atypical cells with small to medium nuclei and with the presence of frequent apoptotic bodies and mitotic figures. Immunohistochemical stains reveal a CD3 and CD30 positive phenotype with high proliferative ratio depicted by Ki-67 (C, D, and E, respectively).

Cytogenetics

Cytogenetics morphological

Karyotypic findings have not been reported.

Probes

See Karai et al., 2013.

Additional anomalies

Unknown.

Variants

Unknown.

Genes involved and proteins

Note

The breakapart probe used to identify 6p25.3 rearrangements in LyP spans both the DUSP22 and the IRF4 genes. The specific breakpoints have not been reported in LyP. In ALK-negative anaplastic large cell lymphomas (ALCLs), 6p25.3 breakpoints in or near either gene have been reported (Feldman et al., 2011). The partner locus was confirmed to be 7q32.3 in a single case of LyP tested, analogous to the t(6;7)(p25.3;q32.3) reported in ALCLs, but was not investigated in the remaining reported cases.

DUSP22

Location

6p25.3

Protein

DUSP22 encodes a dual-specificity phosphatase that inhibits T-cell antigen-receptor signaling in T cells by inactivating the MAP kinase, ERK2. The expression and function of DUSP22 in cases of LyP with 6p25.3 rearrangements have not been reported.

IRF4

Location

6p25.3

Protein

IRF4 encodes a transcription factor, IRF4/MUM1, critical in lymphocyte activation and differentiation. Although IRF4/MUM1 is expressed in most cases of LyP, the expression and function of IRF4/MUM1 in cases of LyP with 6p25.3 rearrangements have not been reported.
Lymphomatoid papulosis (LyP) with 6p25.3 rearrangement

Karai LJ, Feldman AL

Atlas Genet Cytogenet Oncol Haematol. 2014; 18(3)

Breakapart FISH for the DUSP22:IRF4 locus on 6p25.3 demonstrates abnormal separation of the red and green signals in the cell in the lower left (arrows). A cell with a normal signal pattern (two fusion signals, f) is seen in the upper right.

Result of the chromosomal anomaly

Hybrid gene
Note
Not known.

Fusion protein
Note
Not known.

References

Feldman AL, Dogan A, Smith DI, Law ME et al.. Discovery of recurrent t(6;7)(p25.3;q32.3) translocations in ALK-negative anaplastic large cell lymphomas by massively parallel genomic sequencing. Blood. 2011 Jan 20;117(3):915-9

This article should be referenced as such: