RESPONSE SPECTRA WITH RANDOM DAMPING: APPLICATION TO ALGERIAN EARTHQUAKE RESISTANT REGULATIONS

M. HAMMOUTENE – B. TILIJOUNE – B. BENAHMED

a. Laboratoire de Génie Sismique et de Dynamique des Structures (LGSDS), Ecole Nationale Polytechnique, Alger, Algérie, hammoutene_m@yahoo.fr

Résumé:

Mots clefs : Règlement Parasismique Algérien, Spectre de Réponse, Amortissement incertain, Méthode de simulation de Monte Carlo.

Abstract:
We present in this paper, the main results of a numerical investigation of the effect of critical damping uncertainties on the maximum response of systems with random damping. For this purpose, the excitation is defined by a specific target response spectrum. The critical damping coefficient is distributed according to the Lognormal probability density function with known mean and standard deviation. The Monte Carlo method is used to perform a second order analysis of the simulated response spectrum amplitudes. The applicability of the proposed methodology is illustrated using several target response spectra corresponding to real accelerogram records and design response spectra of Algerian Earthquake Resistant Regulations (RPA 2003) associated respectively, with each of the four soil types: rock, firm, soft and very soft. The simulation results are then presented in terms of variations of the amplitudes of response spectra to illustrate quantitatively the effect of the uncertainty of the damping on the maximum structural response and conclusions of engineering importance are given.

Keywords: Algerian Earthquake Resistant Regulations, Response Spectrum, Uncertain damping, Monte Carlo simulation method.

1. Introduction
In order to reliably estimate the seismic response of a building, it is essential to quantify not only the effect of the stochastic nature of the seismic motion on the structural response, but also that of the uncertainty of the dynamic parameters [1, 2 and 3]. These uncertainties, mainly caused by the variation of material properties and approximations in the estimation of parameters of the mathematical model used, may introduce, for a given structure, a significant variation in reliability and response, and therefore it is often desirable to consider their effects in the analysis of its behavior and design.
The objective of this study is to estimate the effects of damping uncertainties on the dynamic response of structures. Uncertainties are treated by considering the damping as a Lognormal random variable with characteristics obtained on the basis of statistical treatment of a wide range of structures and structural systems. The seismic responses are simulated using the Monte Carlo technique. The applicability of the proposed methodology is illustrated using the target response spectrum corresponding to a record of the Parkfield earthquake of June 27, 1966 and design response spectra of the Algerian Earthquake Regulations (RPA 2003) respectively for four soil types: rocky firm, soft and very soft. [4] The simulation results are then presented for response amplitudes lying in intervals at 68% confidence level to illustrate quantitatively the effect of damping uncertainty on maximum structural response and conclusions of importance for engineers are given.

First, the mathematical principles related to stability of probabilistic estimates of Monte Carlo method are presented and applied to our study case for the selection of an optimal sampling. This optimal number of simulations is then used in a second step, to analyze the influence of changes of damping values on those of simulated spectral amplitudes. The analysis is done initially on variations of the spectral amplitudes obtained for a fixed value of the coefficient of variation of the damping and thereafter on the influence of three different values of the coefficient of variation on the maximum structural responses. Results of some importance for engineers are obtained and their use can be extended to improve current seismic regulations.

2. Simulation Technique

In this work, we use the Monte Carlo method to estimate the value $S(\xi, f)$ of the response spectrum associated to a structure of fundamental frequency f and uncertain damping factor ξ. We assume that the values ξ_i (i = 1 to n) of the random variable input ξ are independent and identically distributed, and in our case we choose to make them follow the Log-normal distribution. Under this assumption, the random values of the sample $S(\xi, f)$ of size n (i.e. di = 1 to n) of corresponding responses are also independent and identically distributed and moreover, by virtue of the law of large numbers, the characteristics of the random sample approach even more statistical characteristics of the population as the sample size n increases. To assess the convergence of this estimate, we use a limit state function $P = G(m_{S(\xi)}, \sigma(\xi)) = \text{Prob}(m_{S(\xi)} \in [\mu_{S(\xi)} - \sigma(m_{S(\xi)}) - \mu_{S(\xi)} + \sigma(m_{S(\xi)})])$, where $m_{S(\xi)}$ is the estimation of the mean $\mu_{S(\xi)}$ of the population, obtained for a set of 100 samples of size n and response $\sigma(m_{S(\xi)})$ the standard deviation of these estimates. By virtue of the central limit theorem, the variable $m_{S(\xi)}$ follows the normal distribution with expectation $\mu_{S(\xi)}$ and variance \sqrt{n}. We see that when n is large the probability P approaches the value 0.68 while the variance $\sigma(m_{S(\xi)})/\sqrt{n}$ tends to zero.

![Figure 1](image)

FIG. 1.: Convergence of the probability of P as a function of the number of samples

Figure 1 above shows the convergence of the probability P as a function of the number n of samples. The stability of the simulation was obtained from n = 30000 which is the value that we used to simulate response spectra values in the present study.

3. Numerical Results and discussion

3.1 Statistical characterization of damping

The selection of an appropriate value of damping is subject to controversy in the practice of design of structures. Evaluation of damping in completed structures was undertaken by several investigators. The information provided by complete empirical experiments was assembled [5] and has provided a range of

...
information for different levels of response amplitudes and large classes of structural systems and sizes of buildings. This study has shown that Gamma and lognormal distributions provide the best fit to the variations of damping, which have a coefficient of variation (COV) \(C_\xi = \sigma_\xi/\mu_\xi \) whose values are contained in the interval [33% - 87%].

3.2 Sensitivity of the response to the uncertainty on the value of damping

The simulation procedure described above was applied to generate response spectra compatible with that corresponding to the acceleration record of Parkfield earthquake of 27 June 1966 and with design spectra associated to the Algerian Earthquake Regulations (RPA 2003) for each of four soil types: rock, firm, soft and very soft. A fixed value of the critical damping \(\mu_\xi = 5\% \), regarded as mean value, was considered for the calculation of sets of response spectra characterized by random damping values with COV value \(C_\xi = 40\% \) and following the Lognormal probability density function with standard deviation \(\Delta_\xi = \sigma_\xi = C_\xi \mu_\xi = 0.02 \). For reasons of space we only present the results for the pseudo spectrum acceleration (PSA) for the real accelerogram (Figure 2a) and for comparison the similar results using an analytical procedure [6] using a power spectral density function (DSPF) compatible with the target spectrum associated with the same record of Parkfield Earthquake (Figure 2b).

![FIG. 2. Mean spectrum ± 1 standard - deviation: (a) Monte Carlo simulation b) Analytical approach.](image)

The Figure 3 shows the results obtained by considering the RPA 2003 design spectra associated with each of the four considered soil types (S1 to S4) and constructions of high importance (category 1B) with a quality factor \(Q =1.2 \) and a coefficient of performance of the structure \(R = 5 \), located in high seismic zone (zone 3), characterized by an acceleration coefficient \(A = 0.3 \) for the category concerned structures.

![FIG. 3. RPA spectrum mean ± 1 standard - deviation for different soil types: a) Rock site (S1), b) Firm site (S2), c) Soft site (S3), d) Very soft site (S4).](image)
The results show a low frequency range [< 3Hz] where the response of the oscillator is controlled mainly by the displacement of the support (flexible structure) because the mass does not move in the absolute axes and there is a strict equality between maximum displacements (relative for the mass, absolute for the support), regardless to the damping. Another frequency range [> 8Hz], where the response of the oscillator is controlled mainly by the acceleration of the support, in which the influence of damping variations is least. The largest fluctuations are located in the intermediate frequency range [3Hz - 8Hz], where the values of the spectral response has presents randomly distributed extrema.

The characteristic values of the coefficient of variation \(C_{rep} (f) \) of these extrema are shown in Table 1 for the PSA associated to the real seismic record and in Table 2 for design acceleration response spectra, required by RPA 2003 regulations. It is seen that the variation range of \(C_{rep} (f) \) for the real PSA is between 0.13% and 15.39%, while those associated with regulatory spectra, relatively the same for the three categories of site, are between 2.39% and 13.39.

<table>
<thead>
<tr>
<th>Tableau 1.</th>
<th>Statistical characteristics of the coefficient of variation COV of the amplitudes of the PSA (Parkfield earthquake of June 27, 1966)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean value of COV : (\mu_{C_{rep}})</td>
<td>7.70%</td>
</tr>
<tr>
<td>Standard-deviation value of COV : (\sigma_{C_{rep}})</td>
<td>4.16%</td>
</tr>
<tr>
<td>Range of values of (C_{rep}(f))</td>
<td>0.13% - 15.39%</td>
</tr>
</tbody>
</table>

Fluctuations of extrema around the mean spectrum values are quantified by the average value \(\mu_{C_{rep}} \) of the coefficient of variation \(C_{rep} \), we can see that fluctuations associated to the real PSA (\(\mu_{C_{rep}} = 7.70% \)) are relatively less pronounced than those associated with regulatory response spectra (\(\mu_{C_{rep}} \approx 11.2\% \)).

<table>
<thead>
<tr>
<th>Tableau 2.</th>
<th>Statistical characteristics of the coefficient of variation COV of the amplitudes of RPA spectra</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soil type</td>
<td>Rock (S1)</td>
</tr>
<tr>
<td>Mean value of COV : (\mu_{C_{rep}})</td>
<td>11.2%</td>
</tr>
<tr>
<td>Standard-deviation value of COV : (\sigma_{C_{rep}})</td>
<td>3.62%</td>
</tr>
<tr>
<td>Range of values of (C_{rep}(f))</td>
<td>2.41% - 13.38%</td>
</tr>
</tbody>
</table>

we also note from Table 2, that the variation ranges of amplitudes associated with site-dependant design spectra defined by RPA2003 are characterized by constant values regardless to the type of sol considered.

3.3 Sensitivity of the response to the uncertainty on the statistical characteristics of the damping

In this section, we study the sensitivity of the seismic response to changes in the values of \(C_{z} \). The test results on real buildings showed that \(C_{z} \) varies between [33% - 87%], which lead us to adopt, for this part of the study, the values \(C_{z} : 0.4 \) et 0.8 that represent the extreme values of the interval and 0.6 to associate with the median values of the interval.

Again for reasons of space, we represent only the results associated with the pseudo acceleration spectrum (PSA) for the Parkfield earthquake (Figure 4) and with design spectra (RAP2003) (Figure 5).

These figures show that the same observations as above can be made regarding fluctuations of extrema which are characterized by three distinct frequency ranges. We note also that there is a high sensitivity of spectral response levels to changes in the values of the damping. Indeed, small changes in the values of the damping generate relatively large variations of the response. These findings are put into evidence, for the real PSA, in Table 3, which shows the obtained values \(C_{rep} (f) \) of spectral amplitudes. It is clear that the values of the average, of the standard - deviation and those of extrema grow as \(C_{z} \) grows from 40% to 80%.
FIG. 4 : PSA (Parkfield earthquake of June 27, 1966) mean ± 1 standard deviation for different values of C_ξ :
a) $C_\xi = 40\%$, b) $C_\xi = 60\%$. b) $C_\xi = 80\%$.

En effet, $\mu_{C_{\text{rep}}}$ passe de la valeur 7.70% à la valeur 13.54% alors que $\sigma_{C_{\text{rep}}}$ passe de 4.16% à 6.85% lorsque C_ξ varie de 40% à 80%.

Indeed, the value of $\mu_{C_{\text{rep}}}$ varies from 7.70% to 13.54% while that of $\sigma_{C_{\text{rep}}}$ varies from 4.16% to 6.85%

FIG. 5 : RPA spectrum (soft ground) mean ± 1 standard deviation for different values of C_ξ :
a) $C_\xi = 40\%$, b) $C_\xi = 60\%$. b) $C_\xi = 80\%$.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Values of C_ξ (COV of damping values)</td>
</tr>
<tr>
<td>Values of $\mu_{C_{\text{rep}}}$ (mean of COV of spectral amplitudes)</td>
</tr>
<tr>
<td>Values of $\sigma_{C_{\text{rep}}}$ (standard-deviation of COV of spectral amplitudes)</td>
</tr>
<tr>
<td>Range of values of C_{rep} (COV of spectral amplitudes)</td>
</tr>
</tbody>
</table>

These results are also put in evidence by Table 4 which show values obtained for design spectrum associated to firm soil (S3). It is clear that

<table>
<thead>
<tr>
<th>Tableau 4 : Values of the COV of amplitudes of RPA spectrum associated with firm soil (S3).</th>
</tr>
</thead>
<tbody>
<tr>
<td>Values of C_ξ (COV of damping values)</td>
</tr>
<tr>
<td>Values of $\mu_{C_{\text{rep}}}$ (mean of COV of spectral amplitudes)</td>
</tr>
<tr>
<td>Values of $\sigma_{C_{\text{rep}}}$ (standard-deviation of COV of spectral amplitudes)</td>
</tr>
<tr>
<td>Range of values of C_{rep} (COV of spectral amplitudes)</td>
</tr>
</tbody>
</table>

valeurs de la moyenne, de l’écart – type et celles des valeurs extrêmes des intervalles de variation de C_{rep} croissent en passant de la valeur 40% à la valeur 80% du coefficient de variation C_ξ de l’amortissement. En effet, $\mu_{C_{\text{rep}}}$ passe de la valeur 11.19% à la valeur 18.50% alors que $\sigma_{C_{\text{rep}}}$ passe de 3.63% à 5.88% lorsque C_ξ varie de 40% à 80%.
values of μ_{Crep}, the mean of the spectral amplitudes, grow from 11.19% to 18.50%, when the value of C_s increases from 40% to 80. The same observation can be made when we analyse the variations of the values of the standard deviation σ_{Crep} and and those of the extrema ranges of C_{rep} which respectively grow from 3.63% to 5.88% and from 40% to 80%.

4. Conclusion

In this work we investigated the effect of uncertainties related to the damping of the structural seismic response. The damping of the structure, due in part to the material and links, is modeled by a random variable with a given variability and the seismic responses of structures, expressed in terms of real spectra, are estimated by using the Monte Carlo method. The applicability of the proposed methodology is illustrated using the target response spectrum corresponding to a record of the Parkfield earthquake of June 27, 1966 and design response spectra of the Algerian Earthquake Regulations (RPA 2003).

The results show two frequency ranges [$<\sim 3\text{Hz}$] and [$>\sim 8\text{Hz}$] associated with rigid and flexible structures, respectively, where the not noticeable influence of damping results in small fluctuations of the responses around their respective averages. The largest fluctuations are obtained for the intermediate frequency range [$\sim 3\text{Hz} - 8\text{Hz} \sim$], for which the damping effect is more significant.

It has also been shown that when the variability of the damping increases, characterized by increasing values of COV C_s, the amplitudes of the spectral response also grow. This foreseen outcome reflects the fact that the amplitude levels of the response are inversely proportional to the damping values.

This study can be extended when taking into account the effects of systematic uncertainties induced by the engineer in the values used for the dynamic parameters (mass, stiffness, natural frequency of vibration). The study can also be extended to study the influence of variations of the damping on the dynamic response of the structure by considering the aspects of the different seismic regulations in force around the world.

Références