Dynamic and fatigue modeling of cracked structures containing voids by XFEM

*Laboratoire de Développement en Mécanique et Matériaux, University of Djelfa, PB 3117, Djelfa, Algeria.
*Laboratoire de Génie Mécanique et Développement, ENP, Algiers, Algeria.

ryadhkired@gmail.com, br_khalil@yahoo.fr

Abstract

In this paper, we present a modeling of planar structures with voids under dynamic loading containing stationary cracks in order to determine the dynamic stress intensity factor (DSIF). This parameter will be evaluated by using the eXtended Finite Element Method (XFEM) coupled with the interaction integral technique. Some examples of validation of the computer code developed in this work were tested. The good correlation of the obtained results in dynamic and in fatigue with the literature proves the effectiveness of the method as well as the developed computer code. In addition, a parametric study for a dynamic application, on the presence, position and size of the void with respect to the crack and also on the crack type (crack edge and central crack) was conducted for some practical applications.

Keywords: Stress Intensity Factor, Extended Finite Element Method, Dynamic Loads, Fatigue, Void.

INTRODUCTION AND STAT OF THE ART:

In the cracking of fragile and quasi-fragile structures containing voids (holes) and subjected to quasi-static and dynamic loadings, the characterized parameter is the Stress Intensity Factor (SIF). Many techniques have been used in literature to evaluate this parameter. Among which we mention the finite element method FEM [1], the boundary element method BEM [2], the finite difference method FDM [3], and the symmetric-Galerkin boundary element method SGBEM [4]. We note that the FEM is the most popular for its flexibility and efficiency. However, it requires a special treatment of discontinuities and singularities of fields due to the presence of the crack. For this purpose, a new FEM approach has been developed by Belytschko and Black [5] named eXtended Finite Element Method (XFEM). It consists to take into account the discontinuity at the crack edges and the singularity at the crack tip by enrichment of neighboring nodes with new degrees of freedom via new shape functions associated with elements containing these nodes. Concerning voids, Among the first who addressed the problem by using XFEM in static are Sukumar and Chopp [9], by introducing a new enrichment. Recently, J M Pais [10] has treated voids problem using XFEM but limited on static and quasi-static loadings.

In this context, this work seeks to model the behavior of structures containing simultaneously voids and stationary cracks and subjected to different types of loads (fatigue loads and dynamic Heaviside step loading). The SIF will be evaluated using a global approach based on the J integral. Also, in this work, we will test the effect of size and position of the void. The obtained results will be compared with other works in literature.
XEFM FORMULATION:

The XFEM introduces in the approximation of the displacement field three types of enrichments [5]:
- A discontinuous function \(H \) (Heaviside function) that enriches the split nodes (Fig. 1):

\[
H(x) = \begin{cases}
+1 & \text{if } \phi(x) \geq 0 \\
-1 & \text{if } \phi(x) \leq 0
\end{cases}
\]

(1)

Where \(\phi \) is the level set function that determines the normal position of node \((x)\) from the crack.
- Four (04) singular functions for each tip node (Fig. 1):

\[
F(x) = \sqrt{r} \{\sin(\theta/2), \sin(\theta/2)\sin(\theta), \cos(\theta/2), \cos(\theta/2)\sin(\theta)\}.
\]

(2)

- For void nodes, we add the following enrichment [9]:

\[
V(x) = \begin{cases}
0 & \text{if } \chi(x) < 0 \text{ (inside of the void)} \\
1 & \text{if } \chi(x) > 0 \text{ (outside of the void)}
\end{cases}
\]

(3)

Where \(\chi \) is the level set function of voids.

The approximate displacement fields are as follows:

\[
u(x) \approx V(x) \left[\sum_{i|\Omega} N_i(x)u_i + \sum_{i|\Gamma} N_i(x)H(x)a_i + \sum_{k=1}^4 N_i(x) \left(\sum_{k=1}^4 F_k(x)b_{i,k} \right) \right]
\]

(4)

In addition to traditional unknown \(u_i \), we consider the unknowns \(a_i \) and \(b_k \) corresponding to the enrichment functions \(H \) et \(F_k \), respectively.

INTERACTION INTEGRAL METHOD FOR SIF COMPUTATION:

![Fig. 1 Types of XFEM enrichments of the meshed domain](image)
There are several methods to evaluate the SIF. In this work we use the J integral method by using the interaction integral (Fig. 2). Because its global character, this method is the most stable technique.

![Fig.2 Method of SIF computing: interaction integral technique.](image)

This method introduced by Sih et al [8], combines with the actual field an auxiliary field satisfying the boundary conditions of the problem. In this case, The J integral is given as follows:

$$J = J_{act} + J_{aux} + M.$$ \hspace{1cm} (5)

Where J_{act}, J_{aux} are the J integrals in the actual and auxiliary fields, respectively, and M is the interaction integral that we are interested in, defined by:

$$M = \int_{A} \left[\sigma_{y} \frac{\partial \delta_{aux}}{\partial \delta_{y}} + \sigma_{y} \frac{\partial \delta_{aux}}{\partial \delta_{y}} - W^{M} \delta_{y} \right] \frac{\partial \delta_{y}}{\partial \delta_{y}} d\Gamma = \frac{2}{E} \left(K_{I} K_{aux}^{I} + K_{II} K_{aux}^{II} \right).$$ \hspace{1cm} (6)

With $W^{M} = (\sigma_{y} \varepsilon_{aux}^{I} + \sigma_{y} \varepsilon_{aux}^{II}) / 2$ is the strain energy of interaction and $E' = E$ in plane stress and $E' = E/(1 - \nu^2)$ in plane strain. Therefore, the stress intensity factor in mode I and II take the form:

$$K = \frac{E'}{2} M.$$ \hspace{1cm} (7)

We take $K_{aux}^{I} = 1, K_{aux}^{II} = 0$ in mode I and $K_{aux}^{I} = 0, K_{aux}^{II} = 1$ in mode II. The computing procedure of M is based on the Gauss points within the elements of J domain area A (see Fig 2).

VALIDATION EXAMPLES:

A/ FATIGUE EXAMPLE

We validate the computer software carried out in this study and based on the above developments, in quasi-static (fatigue) loading in the first time. We consider a plate (Fig. 3) of size $2L \times 2l = 120 \text{mm} \times 65 \text{mm}$ with an edge crack of length $2a$, with $a = 10 \text{mm}$, and 3 holes (one is of diameter 20mm and the two others for the load action are both of 13mm). The material properties are $E = 71.7 \times 10^9 \text{Pa}, \nu = 0.3$. The stress state is plane strain with a mesh of 60×120 elements. The plate is under uniaxial fatigue load with a variation of $\Delta P = 20 \text{KN}$ with 12 increments of $da=3 \text{mm}$.
In this case, the crack growth path is followed and compared with that obtained by Giner et al. [12], the results are regrouped in Fig 3. The obtained results as shown in Fig 3b are approximately close to the experimental ones Fig 3c proved so the accuracy of this approach.

B/ DYNAMIC EXAMPLE

Fig. 4a illustrates a rectangular finite plate with $2W \times 2H = 30 \text{mm} \times 60 \text{mm}$ containing a hole of radius $r = 3.75 \text{ mm}$ and subjected to dynamic step loading (Fig.4b). Two cracks extend from the hole and the length between the two crack tips is 15 mm. These cracks are inclined at 30° clockwise from horizontal. The Dynamic SIFs are normalized by K_{ad} given in Eq. (8).

$$K_{\text{ad}} = K_j / (\sigma_0 \sqrt{\pi a})$$ \hspace{1cm} (8)

Fig 3c shows the comparison between the present numerical results at the right crack tip and the solutions given by Song et al.[1] and Fedelinski et al. [11]. The obtained results are enough close to those found by Song et al.[1] and Fedelinski et al. [11] to prove the accuracy of the present approach and the robustness of the developed code.

PARAMETRIC STUDIES:

A/ PLATE WITH EDGE CRACK:

We consider a reference problem of a plate (Fig. 6.a) of size $2L \times 2l = 400mm \times 300mm$ with an edge crack of length $2a$, with $a/l = 0.24$. The material properties are $E = 2.1 \times 10^{11} \text{Pa}$,
\(\nu = 0.3 \) and \(\rho = 3220 \text{Kg/m}^3 \). With plane strain state and a mesh of 60x120 elements. The plate is under uniaxial dynamic tensile \(\sigma_y(t, \sigma_0) \) of Heaviside step load (Fig. 6.b) with \(\sigma_0 = 20 \times 10^6 \text{Pa} \).

We’re going to evaluate the no normalised SIF \(K_{iad} \) eq (8) at the crack tip and the maximum of y component of normalised stress \(\sigma_{iad} \) on A point situated at the nearest node to the crack tip defined as:

\[
\sigma_{iad} = \sigma_{yy} / \sigma_0
\]

Curves on Fig 6.c were found with sliding the void horizontally with a step of \((1/7)a\). These Figures represent the variation of \(K_{iad} \) and \(\sigma_{iad} \) versus the relative position \(x/2w \).

Fig.5 (a) considered geometries, (b). Dynamic load Heaviside (c) SIF and maximum stress

Fig 5c shows that both \(K_{iad} \) and \(\sigma_{iad} \) decreases with the distance of the hole to the crack tip; it is like the crack length decreases. The SIF continues to decline up then vanishes when the hole reached the crack tip. That is why holes at the crack tips are considered a very practical solution to stop their growth.

B/ PLATE WITH CENTRAL CRACK:

We reanalysis the precedent example but with a central crack crossed by a hole of a diameter varying from \(2a/10 \) to \(2a/1.1 \) as shown in Fig 6.a.

In this example, we are going to evaluate the dimensionless SIF given in relation (8) for different diameters of hole to verify its role to increase the cracking plate resistance. Effectively, from the curves in Figure 7.b, the hole more and more bigger extinct more and more the SIF and therefore the risk of crack growth.
Fig. 6 (a) considered geometries, (b). DSIF for different sizes of hole

CONCLUSION:

This study presents a computational procedure to evaluate the SIF for cracked structures with void using XFEM. The correlation of the obtained results with the literature for the dynamic and fatigue applications demonstrates the effectiveness of this procedure. The results of parametric studies are in very good agreement with the expected physically results that therefore approved the robustness of our approach. As perspectives of this study, the present approach can be extended to problems of multi-voids and dynamic crack propagation.

REFERENCES:

