Case Report Section
Paper co-edited with the European LeukemiaNet

Translocation t(X;20)(q13;q13.3) as a secondary chromosome abnormality in a patient with 5q-: a case report

Carlos Augusto Figueiredo Correia, Juliana Lino Rodrigues de Matos, Cristina Alonso Ratis, Silvia Helena A Figueira, Renata Kiyomi Kishimoto, Elvira D Rodrigues Pereira Velloso

Laboratorio de Tecnicas Especiais- Citogenetica do Hospital Israelita Albert Einstein, Sao Paulo, Brazil and Hospital das Clinicas da Universidade Federal de Minas Gerais, Minas Gerais, Brazil (CAF), Hemomed, Sao Paulo, Brazil (JLR), Laboratorio de Tecnicas Especiais- Citogenetica do Hospital Israelita Albert Einstein, Sao Paulo, Brazil (CA, SHAF, RKK, EDR)

Published in Atlas Database: January 2013
Online updated version: http://AtlasGeneticsOncology.org/Reports/tX20q13q13FigueiredoID100066.html
DOI: 10.4267/2042/51053
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 2.0 France Licence.
© 2013 Atlas of Genetics and Cytogenetics in Oncology and Haematology

Clinics
Age and sex
76 years old female patient.

Previous history
Preleukemia. Low risk myelodysplastic syndrome (refractory anemia) diagnosed 32 months before (December, 2009). No previous malignancy, no inborn condition of note.

Organomegaly
No hepatomegaly, no splenomegaly, no enlarged lymph nodes, no central nervous system involvement.

Blood
WBC: 2.7X 10^9/l
HB: 8.5g/dl
Platelets: 146 X 10^9/l
Blasts: 0%
Bone marrow: 5% (Global normocellularity, with erythroid and megakaryocytic hyperplasia and megakaryocytic dysplasia (no-lobated megakaryocytes suggestive of 5q- Syndrome), less than 5% of myeloblasts and 23% of ring sideroblasts.)

Cyto-Pathology Classification
Cytology
Myelodysplastic Syndrome - Refractory anemia with ring sideroblasts (FAB classification).

Diagnosis
Myelodysplastic Syndrome - Refractory citopenia with multilineage dysplasia and ringed sideroblasts (WHO classification).

Survival
Date of diagnosis: 08-2012
Treatment: Erythropoietin
Complete remission: no
Treatment related death: no
Relapse: no
Status: Alive
Last follow up: 09-2012
Survival: 1 month from the cytogenetic abnormality detection, 30 months from the MDS diagnosis.
Translocation t(X;20)(q13;q13.3) as a secondary chromosome abnormality in a patient with 5q-: a case report

Figueiredo Correia CA, et al.

Atlas Genet Cytogenet Oncol Haematol. 2013; 17(7)

Partial G-banded karyotypes showing the del(5)(q13q31) and the t(X;20)(q13;q13.3)

Karyotype

Sample: Bone marrow
Culture time: 24 and 48 hours without stimulating agents
Banding: GTG
Results
46,XX,del(5)(q13q31)[1]/46,X,t(X;20)(q13q13.3),del(5(q13q31))[11]/46,XX[8]

Karyotype at Relapse
not done

Comments
The band Xq13 is frequently involved in rearrangements seen in hematological malignancy. The structural rearrangement idic(X)(q13) is associated with the myelodysplastic syndrome with ringed sideroblasts and this region is difficult for mapping because is rich in complex repeats with subregional inversions and high concentration of LINE repeats (boosters of X-inactivation). The chromosome 20q interstitial deletions are well established nonrandom abnormalities in myeloid disorders, particularly in polycythemia vera and myelodysplasia. Very few cases of translocations involving chromosome 20 have been reported in hematological malignancy. The band 20q13 is rich in cancer genes and translocation involving this region has been reported in cases of acute myeloid leukemia. One study shows that breakpoints of X chromosomes associated with myelodysplasia were located in a region of 450 kb next to the gene XIST (Xq13). Another study demonstrated that a critical event in myelodysplasia is loss of tumor suppressor genes present on the long arm of chromosome 20. This suppression can occur when a potential cryptic deletion is associated with a translocation. This phenomenon generates a second mechanism causing inactivation of the X chromosome and derivative 20 resulting loss of function of tumor suppressor genes.

Seven cases of t(X;20)(q13;q13) were described in literature; all affecting women over the age of 57 with myeloid disorders. We report the detection, by conventional cytogenetic methods, the t(X;20)(q13;q13.3) in one female patient with myelodysplastic syndrome subtype Refractory cytopenia with multilineage dysplasia and ringed sideroblasts (classification WHO).

Although this translocation was described as a primary clonal chromosome abnormality, in this case the t(X;20) seems to be a secondary chromosome abnormality following a deletion 5q.

References

Dewald GW, Pierre RV, Phyliky RL. Three patients with structurally abnormal X chromosomes, each with Xq13 breakpoints and a history of idiopathic acquired sideroblastic anemia. Blood. 1982 Jan;59(1):100-5


Translocation (X;20)(q13;q13.3) as a secondary chromosome abnormality in a patient with 5q-: a case report

Figueiredo Correia CA, et al.


This article should be referenced as such: