Leukaemia Section
Short Communication

t(3;6)(q27;p22) HIST1H4I/BCL6

Jean-Loup Huret

Genetics, Dept Medical Information, University of Poitiers, CHU Poitiers Hospital, F-86021 Poitiers, France (JLH)

Published in Atlas Database: December 2012

Online updated version: http://AtlasGeneticsOncology.org/Anomalies/t0306q27p22ID2009.html

DOI: 10.4267/2042/48872

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 2.0 France Licence.

© 2013 Atlas of Genetics and Cytogenetics in Oncology and Haematology

Clinics and pathology

Disease
Non Hodgkin lymphoma

Clinics
Apparently 6 cases have been described: a case of follicular mixed small cleaved and large cell lymphoma, a case of follicular large cell lymphoma, and 3 cases of diffuse large B-cell lymphoma (Akasaka et al., 1997; Akasaka et al., 2000; Kurata et al., 2002; Ohno, 2006); and a case of primary central nervous system lymphoma (PCNSL, a diffuse large B cell lymphoma confined to the brain) (Schwindt et al., 2006).

Cytogenetics

Cytogenetics morphological

Only two of the five cases reported by the Kyoto group showed a t(3;6)(q27:p21-22).

Genes involved and proteins

BCL6

Location
3q27.3

Protein
706 amino acids; composed of a NH2-term BTB/POZ domain (amino acids 1-130 (32-99 according to Swiss-Prot) which mediates homodimerization and protein-protein interactions with other corepressors (including HDAC1 and NCO1R2/SMRT to constitute a large repressing complex, another transcription repression domain (191-386), PEST sequences (300-417) with a KKYK motif (375-379), and six zinc finger at the C-term (518-541, 546-568, 574-596, 602-624, 630-652, 658-681), responsible for sequence specific DNA binding.

Transcription repressor; recognizes the consensus sequence: TTCCT(A/C)GAA (Albagli-Curiel, 2003).

Role in germinal centers of lymphoid follicles. BCL6 prevents ATM and TP53 to induce apoptosis in response to DNA rearrangements such as somatic hypermutation and class switch recombination.

Therefore essential for normal B cell development.

HIST1H4I

Location
6p22.1

Protein
Component of the nucleosome. Histones play a major role in DNA repair, replication and transcription.

Result of the chromosomal anomaly

Hybrid gene

Description

Breakpoints in HIST1H4 are located within the single exon to 3' of the terminal palindrome; the breakpoint in BCL6 was located within the major translocation cluster.

References

This article should be referenced as such: