SETBP1 (SET binding protein 1)

Ion Cristóbal, Laura García-Orti, María D Odero

Translational Oncology Division, Health Research Institute and Oncology Department, University Hospital "Fundacion Jimenez Diaz", Autonomous University of Madrid, E-28040 Madrid, Spain (IC), Division of Oncology, Center for Applied Medical Research (CIMA), University of Navarra, E-31008 Pamplona, Spain (LGO), Division of Oncology, Center for Applied Medical Research (CIMA), University of Navarra, E-31008 Pamplona, Spain; Department of Genetics, School of Sciences, University of Navarra E-31008 Pamplona, Spain (MDO)

Published in Atlas Database: September 2012

Online updated version: http://AtlasGeneticsOncology.org/Genes/SETBP1ID44031ch18q12.html

DOI: 10.4267/2042/48755

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 2.0 France Licence. © 2013 Atlas of Genetics and Cytogenetics in Oncology and Haematology

Identity

Other names: SEB
HGNC (Hugo): SETBP1
Location: 18q12.3
Local order: From centromere to telomere: SETBP1, SMAD2, SMAD4, BCL2.

DNA/RNA

Description
SETBP1 has two isoforms: transcript variant a spans 387.61 kb on the genomic DNA and has 6 exons; transcript variant b spans 197.24 kb on the genomic DNA and includes 4 exons.

Transcription
9899 bp mRNA (isoform a); 1804 bp mRNA (isoform b).

Protein

Description
Two isoforms: variant a (1596 amino acids); variant b (242 amino acids).

Expression
Expressed in numerous tissues.

Localisation
Predominantly in the nucleus (Minakuchi et al., 2001; Cristóbal et al., 2010).

Function

SETBP1 overexpression promotes leukemogenesis by enhancing full-length SET protein and then impairing the phosphatase activity of the tumor suppressor PP2A in acute myeloid leukaemia. In addition, defects in SETBP1 have been described as the cause of Schinzel-Giedion syndrome.

Homology

The protein contains a region homologous to the dimerization domain of the SKI oncoprotein, six PEST sequences, three AT-hook DNA binding domains, a SET-binding domain and three nuclear localization signals.

Mutations

Somatic
De novo mutations have been described in patients with Schinzel-Giedion syndrome: I871T (5 unrelated patients), D868N (4 unrelated patients), D868A (one case), G870D (one case) and G870S (three unrelated patients) (Hoischen et al., 2010; Suphapeetiporn et al., 2011).

Implicated in

Pediatric T-cell acute lymphoblastic leukemia (T-ALL) (Panagopoulos et al., 2007)

Cytogenetics

t(11;18)(p15;q12); only one case described so far.
Hybrid/Mutated gene
5’ NUP98 - 3’ SETBP1

Abnormal protein
The NUP98-SETBP1 fusion protein consists in the exon 12 of NUP98 fused in-frame with exon 5 of SETBP1.

Oncogenesis
SETBP1/NUP98 expression was not detected, suggesting that the NUP98/SETBP1 transcript is pathogenetically important.

Schinzel-Giedion syndrome

Prognosis
Defects in SETBP1 caused by the presence of the novo mutations have been described as the cause of Schinzel-Giedion midface retraction syndrome.

Cytogenetics
Normal karyotype.

Acute myeloid leukemia (AML)

Prognosis
SETBP1 overexpression associates with worse overall survival specially in the subgroup of elderly patients (older than 60 years).

Oncogenesis
SETBP1 overexpression promotes leukemogenesis by enhancing full-length SET protein and then impairing the phosphatase activity of the tumor suppressor PP2A through the formation of a SETBP1-SET-PP2A complex.

References


This article should be referenced as such: