t(5;9)(q32;p24) KANK1/PDGFRB

Francois P Duhoux, Sandrine Medves, Laura Noël, Augustin Ferrant, Hélène A Poirel, Jean-Baptiste Demoulin

Université Catholique de Louvain, de Duve Institute, MEXP - UCL 74.30, avenue Hippocrate 75, BE-1200 Brussels, Belgium (FPD, SM, LN, AF, HAP, JBD)

Published in Atlas Database: October 2012
Online updated version: http://AtlasGeneticsOncology.org/Anomalies/t0509q32p24ID1612.html
DOI: 10.4267/2042/48497

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 2.0 France Licence.
© 2013 Atlas of Genetics and Cytogenetics in Oncology and Haematology

Clinics and pathology

Disease
Myeloproliferative neoplasm with essential thrombocythemia

Note
No detectable BCR-ABL transcript or JAK2 V617F mutation.

Epidemiology
Found in one case of myeloproliferative neoplasm with severe thrombocythemia, in a 67-year-old male.

Clinics
Thrombocythemia (platelets, 904 x 10^9/l) without prominent eosinophilia or neutrophilia.

Cytology
Increased number of polymorphic megakaryocytes without any blast cells or dysplastic features; suggestive of myeloproliferative neoplasm, most likely essential thrombocythemia.

Treatment
No response to hydroxyurea, complete remission with imatinib at the dose of 100 mg/day.

Evolution
Complete remission (FU: 3 years).

Prognosis
Unknown.

Cytogenetics

Cytogenetics morphological
46.XY,t(5;9)(q31~32;p22~p24.3)[16]/46,XY[2].

Cytogenetics molecular
Disruption of PDGFRβ (5q31~32) and KANK1 (9p24.3) loci.
Probes
RP11-130C19 and RP11-31F19.

Additional anomalies
No.

Genes involved and proteins

KANK1 (KN motif and ankyrin repeat domains 1)
Location 9p24.3
Note Formerly: KANK, ANKRD15, KIAA0172.
Protein Two KANK1 protein isoforms are encoded by different transcripts of the same gene: a long isoform of 1352 amino-acids and a short one 1194 aa, which is predominant in hematopoietic cells (Medves et al., 2010).
Both isoforms have multiple N-terminal coiled-coil domains, which are included in the fusion with PDGFRB, and C-terminal ankyrin repeat domains (Kakinuma et al., 2009).

PDGFRB (platelet-derived growth factor receptor, beta polypeptide)
Location 5q31-33

Protein Platelet-derived growth factors (PDGF) receptor, beta isoform. This receptor belongs to the receptor tyrosine kinase family (type III).

Result of the chromosomal anomaly

Hybrid gene
Description Exon 2 of KANK1 (ENST00000382293, Ensembl database, up to nucleotide 3020) is fused to exon 9 of PDGFRB (ENST00000261799, from nucleotide 1714).

Fusion protein
Description The fusion protein contains the first 741 residues of KANK1 fused to the last 692 residues of PDGFRB (Medves et al., 2010). This includes several coiled-coil domains of KANK1 and the fifth immunoglobulin-like domain, the transmembrane domain and the kinase domain of PDGFRB. The deletion of the immunoglobulin-like domain does not affect the oncogenic activity of the fusion (Medves et al., 2010). By contrast, deletion of the coiled-coil domains prevents cell transformation and signaling via STAT5 and MAP kinases (Medves et al., 2011). Our data suggest that KANK1-PDGFRB adopts a trimeric and multimeric conformation (Medves et al., 2011).
Structure of PDGFRB, KANK1 and the KANK1-PDGFRB fusion. See text for details. KOD, KANK1 oligomerization domain. Adapted from Demoulin et al., 2012 and Medves et al., 2012.

Oncogenesis

This fusion protein induces the proliferation of Ba/F3 cells (Medves et al., 2010) and CD34+ human progenitors (Medves et al., 2011). The fusion was identified in thrombocythemia, which is associated with JAK2 mutations or indirect activation of JAK2 by mutated thrombopoietin receptors (c-MPL).

In the present case, no JAK2 activation was detected in cells expressing KANK1-PDGFRB and these cells are not sensitive to JAK inhibitors (Medves et al., 2011). Instead, they are highly sensitive to imatinib.

References

Medves S, Duhoux FP, Ferrant A, Toffalini F, Ameye G, Libouton JM, Poirel HA, Demoulin JB. KANK1, a candidate tumor suppressor gene, is fused to PDGFRB in an imatinib-responsive myeloid neoplasm with severe thrombocythemia. Leukemia. 2010 May;24(5):1052-5

Medves S, Noël LA, Montano-Almendras CP, Albu RI, Schoemans H, Constantinescu SN, Demoulin JB. Multiple oligomerization domains of KANK1-PDGFRB are required for JAK2-independent hematopoietic cell proliferation and signaling via STAT5 and ERK. Haematologica. 2011 Oct;96(10):1406-14
