Gene Section
Short Communication

TCF3 (transcription factor 3 (E2A immunoglobulin enhancer binding factors E12/E47))

Jean-Loup Huret

Genetics, Dept Medical Information, University of Poitiers, CHU Poitiers Hospital, F-86021 Poitiers, France (JLH)

Published in Atlas Database: January 2012

Online updated version: http://AtlasGeneticsOncology.org/Genes/E2A.html

DOI: 10.4267/2042/47341

This article is an update of:

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 2.0 France Licence.
© 2012 Atlas of Genetics and Cytogenetics in Oncology and Haematology

Identity

Other names: E2A, TCF3 (Trancription Factor 3), ITF1 Immunoglobulin Enhancer Binding, Factors E12/E47
HGNC (Hugo): TCF3
Location: 19p13.3
Local order: Proximal to ENL also in 19p13.3; LYL1 is in 19p13.2-p13.1 and ELL in 19p13.1.

DNA/RNA

Description

The E2A gene encodes two distinct basic helix-loop-helix transcription factors, E12 (ITF1) and E47 (TCF3) through alternative splicing.

Transcription

4.4 kb mRNA; coding sequence: 2.0 kb; alternate splicing --> E12 and E47, having different bHLH encoding exons (+ also E2-5).

Protein

Description

It forms homodimers and heterodimers with other basic helix-loop-helix transcription factors, such as ASCL1, MYOD1, TAL1, MYOG, NEUROG1, and TWIST1. It contains a transactivation domain (ADI) in N-term, a nuclear localization signal, activation domain II (ADII) (antiapoptotic), an ubiquitin ligase domain, a DNA binding motif, and a helix-loop-helix motif which mediates protein dimerisation in C-term.

Expression

Widely expressed.

Localisation

Nuclear.

Function

Ubiquitously expressed during development and in areas of rapid cell proliferation and differentiation. Role in cell growth, cell commitment, and differentiation. Role in epithelial mesenchymal transition. During epithelial mesenchymal transition, TGF-beta upregulates E2A proteins. E2A proteins are down regulated by the ubiquitin pathway (review in Slattery et al., 2008). Essential for normal B-cell hematopoiesis.
TCF3 (transcription factor 3 (E2A immunoglobulin enhancer binding factors E12/E47))

Homology
With other proteins with a helix-loop-helix dimerization domain signature, MYC type (MYC family, of which are MYC, LYL1, TAL1).

Implicated in

t(1;19)(q23;p13)/B-ALL --> hybrid gene: TCF3/PBX1

Disease
pre B-ALL mainly; CD19+, CD10+, CD9+ (review in Hunger, 1996).

Prognosis
Controversial data; associated with poor prognostic features.

Cytogenetics
Two different forms:
- the balanced t(1;19);
- the unbalanced form, with 2 normal chromosomes 1, a der(19), and a normal chromosome19; --> partial trisomy for 1q23-1qter and monosomy for 19p13.3-pter;
additional anomalies: in half of the cases; they are various.

Hybrid/Mutated gene
5’ TCF3 - 3’ PBX1; breakpoints are clustered on both genes.

Abnormal protein
N-term transcriptional activation domains from TCF3 fused to the Hox cooperative motif and homeodomain of C-term PBX1.

Oncogenesis
Potent transcriptional activator; pleiotropic transforming activity.

t(12;19)(p13;p13)/B-ALL --> hybrid gene: TCF3/ZNF384

Disease
Pro-B acute lymphoblastic leukemia with expression of myeloid antigens (La Starza et al., 2005; Zhong et al., 2008).

Prognosis
Relatively good prognosis.

Cytogenetics
The t(12;19)(p13;p13) is cryptic.

Hybrid/Mutated gene
5’ TCF3 - 3’ ZNF384

t(13;19)(q14;p13)

Disease
Only one case to date, an adult patient with pre B-ALL; she achieved complete remission (Barber et al., 2007).

Hybrid/Mutated gene
The translocation involves TCF3 and an unknown partner in 13q14.

t(17;19)(q22;p13)/B-ALL --> hybrid gene: TCF3/HLF

Disease
Childhood B-ALL (Raimondi et al., 1991; Hunger et al., 1992; Inaba et al., 1992; Devaraj et al., 1994; Mathew et al., 2001; Takahashi et al., 2001; Ribeiro et al., 2002; Yeung et al., 2006; Barber et al., 2007).

Prognosis
Poor prognosis is likely.

Hybrid/Mutated gene
5’ TCF3 - 3’ HLF
Abnormal protein
N-term transcriptional activation domains from TCF3 fused to the basic leucine zipper from HLF C-term.

Oncogenesis
TCF3/HLF homodimers bind to promoter/enhancer elements of downstream target genes.

\textit{t(19;19)(p13;q13)/B-ALL \rightarrow hybrid gene: TCF3/TFPT}

Disease
Childhood pre-B cell acute lymphoblastic leukemia (Brambillasca et al., 1999).

Cytogenetics
This chromosome rearrangement is cryptic.

Hybrid/Mutated gene
5' TCF3 - 3' TFPT

Abnormal protein
Retains the transactivation domain of TCF3, but with a truncation in TFPT, due to the frequent occurrence of a stop codon.

Breakpoints

Note
Breakpoints: 1- in \textit{t(1;19)}: are located (and dispersed) in the intron 13, and remove the bHLH domain; 2- in \textit{t(17;19)} type I: are so far located at a given nucleotide in intron 13; in \textit{t(17;19)} type II: are located in intron 12.

References
Hunger SP, Ohyashiki K, Toyama K, Cleary ML. Hlf, a novel hepatic bZIP protein, shows altered DNA-binding properties following fusion to E2A in \textit{t(17;19)} acute lymphoblastic leukemia. Genes Dev. 1992 Sep;6(9):1608-20
Haglund U, Juliusson G, Stellan B, Gahrton G. Hairy cell leukemia is characterized by clonal chromosome abnormalities clustered to specific regions. Blood. 1994 May 1;83(9):2637-45

This article should be referenced as such: