Bone: t(3;17)(q21;p13) in aneurysmal bone cyst

Jean-Loup Huret

Genetics, Dept Medical Information, University of Poitiers, CHU Poitiers Hospital, F-86021 Poitiers, France (JLH)

Published in Atlas Database: November 2011

Online updated version: http://AtlasGeneticsOncology.org/Tumors/t0317q21p13BoneCystID5671.html

DOI: 10.4267/2042/47307

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 2.0 France Licence.

© 2012 Atlas of Genetics and Cytogenetics in Oncology and Haematology

Clinics and pathology

Disease
Aneurysmal bone cysts

Note
Benign but locally aggressive tumor.

Phenotype / cell stem origin
Occurs mainly in vertebrae and flat bones. Multiple involvement is frequent.

Etiology
May involve the arrest of maturation of the osteoblasts caused by USP6 overexpression and dysregulation of autocrine BMP (bone morphology protein) signaling (Lau et al., 2010).

Epidemiology
Usually seen in patients aged 10-20 years; represents about 5% of primary bone tumours; slightly more frequent in female patients.

Clinics
Forms a spongy hemorrhagic mass; symptoms are pain, swelling, pathological fractures. One case to date was found with a t(3;17)(q21;p13), a 7-year-old girl with a tumor located in the tibia (Oliveira et al., 2005).

Treatment
Surgical curettage.

Prognosis
Recurrence occurs in one fourth of cases.

Cytogenetics

Cytogenetics Morphological
The t(3;17)(q21;p13) was the sole anomaly.

Genes involved and proteins

CNBP

Location
3q21

Protein
CNBP, also called ZNF9, is made of 7 CCHC-type Zn fingers. Nucleic acid binding protein; binds single stranded DNA and RNA; act as a regulator of transcription and translation of many genes, including MYC. CNBP may regulate gene expression by catalyzing the formation of G4s (G-quadruplexes, formed by intramolecular four-stranded DNA structures).

Germinal mutations
Myotonic dystrophy DM2 is caused by expansion of a (CCTG)(n) in CNBP. CNBP has also been implicated in sporadic inclusion body myositis (review in Calcacerta et al., 2010).

USP6

Location
17p13

Protein
USP6, also called TRE17/ubiquitin-specific protease 6 (USP6), is a deubiquitinase. It is the first de-ubiquitinating enzyme to activate NF-KB, and requires both catalytic subunits of IKK (IKKalpha and IKKbeta) (Pringle et al., 2011).

Result of the chromosomal anomaly

Hybrid Gene

Description
5’ CNBP - 3’ USP6
Fusion Protein

Description
Fusion of the noncoding exon 1 of CNBP to USP exon 2 (i.e. to the entire coding sequence of USP6, resulting in upregulation of USP6).

References

This article should be referenced as such: