Bone: t(1;17)(p34;p13) in aneurysmal bone cyst

Jean-Loup Huret

Genetics, Dept Medical Information, University of Poitiers, CHU Poitiers Hospital, F-86021 Poitiers, France (JLH)

Published in Atlas Database: November 2011

Online updated version : http://AtlasGeneticsOncology.org/Tumors/t0117p34p13BoneCystID5446.html

DOI: 10.4267/2042/47306

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 2.0 France Licence.

Clinics and pathology

Disease
Aneurysmal bone cysts

Note
Benign but locally aggressive tumor.

Phenotype / cell stem origin
Occurs mainly in vertebrae and flat bones. Multiple involvement is frequent.

Etiology
May involve the arrest of maturation of the osteoblasts caused by USP6 overexpression and dysregulation of autocrine BMP (bone morphology protein) signaling (Lau et al., 2010).

Epidemiology
Usually seen in patients aged 10-20 years; represents about 5% of primary bone tumours; slightly more frequent in female patients.

Clinics
Forms a spongy hemorrhagic mass; symptoms are pain, swelling, pathological fractures. One case to date was found with a t(1;17)(p34;p13), a 7-year-old boy with a tumor located in the tibia (Althof et al., 2004; Oliveira et al., 2005).

Treatment
Surgical curetage.

Prognosis
Recurrence occurs in one fourth of cases.

Cytogenetics

Cytogenetics Morphological
The t(1;17)(p34;p13) was the sole anomaly.

Genes involved and proteins

THRAP3

Location
1p34

Protein
THRAP3, also called TRAP150, is made of an arginine/serine-rich sequence in the N-terminal region and domains with similarity with BCLAF1 and with CASC3/MLN51 in the C-terminal region. It is part of the transcription regulatory complex TRAP/Mediator, and a component of the spliceosome. It both activates pre-mRNA splicing and induces mRNA degradation. The arginine/serine-rich N-term of TRAP3 is responsible for its splicing activity, and the C-term part for its mRNA degradation activity (Lee et al., 2010).

USP6

Location
17p13

Protein
USP6, also called TRE17/ubiquitin-specific protease 6 (USP6), is a deubiquitinase. It is the first de-ubiquitinating enzyme to activate NF-KB, and requires both catalytic subunits of IKK (IKKalpha and IKKbeta) (Pringle et al., 2011).
Result of the chromosomal anomaly

Hybrid Gene

Description
5' THRAP3 - 3' USP6

Fusion Protein

Description
Fusion of the noncoding exon 1 of THRAP3 to a splicing variant of USP exon 1 (i.e. to the entire coding sequence of USP6, resulting in upregulation of USP6).

References

This article should be referenced as such: