t(1;9)(p34;q34)

Jean-Loup Huret

Genetics, Dept Medical Information, University of Poitiers, CHU Poitiers Hospital, F-86021 Poitiers, France (JLH)

Published in Atlas Database: May 2011

Online updated version : http://AtlasGeneticsOncology.org/Anomalies/t0109p34q34ID2143.html

DOI: 10.4267/2042/46057

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 2.0 France Licence.
© 2011 Atlas of Genetics and Cytogenetics in Oncology and Haematology

Clinics and pathology

Disease

B cell progenitor acute lymphoid leukemia (B-ALL)

Epidemiology

Only one case to date, a 22-year-old male patient (Hidalgo-Curtis et al., 2008).

Prognosis

Complete remission was obtained, a relapse occurred. The patient was in complete remission 6 years after diagnosis.

Cytogenetics

Cytogenetics morphological

The translocation was found solely in the main clone, and a subclone also showed a +21.

Genes involved and proteins

SFPQ

Location

1p34.3

Protein

DNA- and RNA binding protein; pre-mRNA splicing factor; binds specifically to intronic polypyrimidine tracts.

Role in transcription and RNA splicing: SFPQ, often called PSF, is a coactivator of Fox proteins, which bind the RNA element UGCAUG and regulate alternative pre-mRNA splicing. SFPQ and NONO are part of a large complex with all the snRNPs. SFPQ is phosphorylated by GSK3, which prevents SFPQ from binding PTPRC (CD45 antigen) pre-mRNA. The association of HNRNPL and SFPQ drives the change in PTPRC (CD45) splicing (CD45 undergoes alternative splicing in response to T-cell activation).

DNA damage: DNA double-strand breaks are repaired via nonhomologous DNA end joining and homologous recombination. The SFPQ/NONO heterodimer enhances DNA strand break rejoining. SFPQ has homologous recombination and non-homologous end joining activities. SFPQ is associated with the RAD51 protein complex.

Role in transcriptional regulation: SFPQ and PTK6 (protein tyrosine kinase 6, also called BRK) play a role downstream of the EGF receptor (EGFR). SFPQ and NONO form complexes with the androgen receptor (AR) and modulate its transcriptional activity (Huret, 2011).

ABL1

Location

9q34

Protein

ABL1, when localized in the nucleus, induces apoptosis after DNA damage. Cyttoplasmic ABL1 has a possible function in adhesion signalling (Turhan, 2008).

Result of the chromosomai anomaly

Hybrid gene

Description

Break in the 3’ of SFPQ exon 10 and reunion with ABL1 intron 3; a further mRNA splicing gives rise to a chimeric SFPQ exons 1 to 9 (nucleotide 2072) fused to ABL1 exon 4 to end.
Fusion protein

Description

1609 amino acids fusion protein of 174 kDa; retains most of SFPQ, including the RNA recognition motifs and the coiled-coil domain (dimerization domain), fused to the SH2 domain of ABL1; the fusion protein also includes the SH1 domain (tyrosine kinase activity), the nuclear localization domain, and the actin binding domain of ABL1.

Oncogenesis

Constitutive tyrosine kinase activation is likely, through dimerization of the fusion protein.

References

Hidalgo-Curtis C, Chase A, Drachenberg M, Roberts MW, Finkelstein JZ, Mould S, Oscier D, Cross NC, Grand FH.. The t(1;9)(p34;q34) and t(8;12)(p11;q15) fuse pre-mRNA processing proteins SFPQ (PSF) and CPSF6 to ABL and FGFR1. Genes Chromosomes Cancer. 2008 May;47(5):379-85.

This article should be referenced as such: