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Identity 

Other names: ABCB5alpha; ABCB5beta; EST422562 

HGNC (Hugo): ABCB5 

Location: 7p15.3 

DNA/RNA 

Description 

The gene encompasses 108081 bp of DNA with 19 

exons. 

Transcription 

ABCB5 encodes a 2784 bp mRNA. The coding region 

consists of exon 4-19, while exon 1-3 and 3' part of 

exon 19 are non-coding. 

Protein 

Description 

Only 2 isoforms, ABCB5alpha and ABCB5beta have 

been studied so far. ABCB5 P-gp (isoform 1, also 

known as ABCB5beta) contains 812 amino acids (P-gp 

is short for "permeability glycoprotein"). ABCB5alpha 

contains only 131 amino acids. 

Expression 

ABCB5 is reported to be expressed in many different 

tissues, including brain, intestine, kidney, mammary 

gland, testis and skin. Besides, ABCB5 has a 

significantly higher expression level in malignant 

melanomas than in benign melanocytes. 

Localisation 

ABCB5 P-gp is located in the plasma membrane, with 

5 transmembrane helices flanked by both extracellular 

and intracellular ATP-binding domains. 

Function 

ABCB5 belongs to the ATP-binding cassette (ABC) 

transporter superfamily of integral membrane proteins. 

These proteins participate in ATP-dependent 

transmembrane transport of structurally diverse 

molecules. ABCB5 mediates melanoma doxorubicin 

resistance via its function as a doxorubicin efflux 

transporter. In addition, ABCB5 P-gp can regulate 

progenitor cell fusion. However, ABCB5alpha alone 

may be non-functional. 

Homology 

ABCB5 shares 54% and 56% amino acid identity with 

ABCB1 and ABCB4, respectively. 

 

 

ABCB5 gene on chromosome 7p. 
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Implicated in 

Malignant melanoma 

Note 

Tissue microarray showed that primary and metastatic 

malignant melanomas expressed significantly more 

ABCB5 protein than benign melanocytic nevi, thick 

primary melanomas more than thin primary 

melanomas, and melanomas metastatic to lymph nodes 

more than primary lesions. Melanoma cell 

subpopulations identified by expression of ABCB5 

were enriched for human malignant-melanoma-

initiating cells (MMIC). Besides, ABCB5 also mediates 

chemoresistance in human malignant melanoma. 

Chemoresistance in human malignant 
melanoma 

Oncogenesis 

ABCB5 P-gp mediates melanoma doxorubicin 

resistance via its function as a doxorubicin efflux 

transporter. 
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Identity 

Other names: CDCH; p42; P42; EC 2.7.11.22; 

PNQALRE 

HGNC (Hugo): CCRK 

Location: 9q22.1 

Local order: 235kb telomeric to cathepsin L1 

(CTSL1). 

DNA/RNA 

Description 

Human CCRK gene spans around 8.3kb of genomic 

DNA on the chromosome 9q22.2 in telomere-to-

centromere orientation. This gene locates within the 

locus tag RP11-350E12.2. A block of hypermethylated 

CpGs has been identified in the CCRK promoter and is 

associated with its high expression in adult human 

brain cortex (Farcas et al., 2009). 

Transcription 

Four alternative spliced transcript variants of CCRK 

gene are known. The generic variant 3  

(GenBank#: NM_001039803) consists of 8 exons, with 

the start codon on exon 1 and stop codon on exon 8. 

Both transcript variant 1 (GenBank#: NM_178432) and 

variant 2 (GenBank#: NM_012119) have had their 

exon 5 deleted. Variant 1 also differs from the other 

variants by an additional 39nt on exon 2. The cardiac 

splice variant (GenBank#: AY904367) lacks both the 

exons 5 and 6, and has truncated 5'- and 3'-untranslated 

regions. 

Pseudogene 

No pseudogenes for CCRK are known. 

Protein 

Note 

There has been controversy over whether CCRK 

functions as a second cyclin-dependent kinase (CDK)-

activating kinase (CAK) (i.e., in addition to CDK7). 

Inconsistent with other studies, Wohlbold and 

colleagues (2006) reported that monomeric CCRK has 

no intrinsic CAK activity. 

Description 

The open reading frame encodes a 346-amino acid  

 

 

(A) Chromosomal location of human CCRK gene. (B) Genomic organization of four CCRK transcript variants. 
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protein, with molecular weight of 42kDa. CCRK 

protein has a protein kinase domain extending from 

residues 4-288, in which typical ATP-binding region 

and serine/threonine kinase active site can be identified. 

Its interacting proteins include CDK2, cyclin H and 

casein kinase 2. 

Expression 

In human tissues, the 2.2kb CCRK transcript is 

expressed predominantly in the brain and kidney, and 

to lesser extent in the liver, heart and placenta. The 

cardiac CCRK isoform is detectable only in heart, liver 

and kidney. CCRK is also widely expressed in cell 

lines originating from glioblastoma (U87, U118, U138, 

U373 and SW1088), cervical adenocarcinoma (HeLa), 

colorectal carcinoma (HCT116), osteogenic sarcoma 

(U2OS), breast adenocarcinoma (MCF-7), ovarian 

carcinoma (UACC-1598, UACC-326, OVCAR-3, HO-

8910 and TOV-21G), lung fibroblast (WI-38), 

myoblast (C2C12), and lymphocyte (GM08336). 

Localisation 

Mainly in nucleus and perinuclear region. Relative low 

expression in cytoplasm. 

Function 

CCRK is an important regulator of G1- to S-phase 

transition in cell cycle and is indispensable for cell 

growth. It possesses CDK-activating kinase activity 

that is essential for the phosphorylation of CDK2 at 

Thr160 (Liu et al., 2004) and male germ cell-associated 

kinase-related kinase (MRK) at Thr157 in mammalian 

cells (Fu et al., 2006). CCRK also acts as a negative 

regulator of apoptosis and may confer cells with drug 

resistance (MacKeigan et al., 2005). Moreover, CCRK 

splice variant expressing in the heart has been shown to 

promote cardiac cell growth and survival (Qiu et al., 

2008). 

Homology 

CCRK belongs to the CDK family. Among the other 10 

CDK members, human CCRK shares the highest 

sequence identity (43%) with a well known CAK, 

CDK7. Orthologs of CCRK are found in orangutans, 

Old World monkeys, bovine, dog, boar, mouse, rat, 

fishes, frog, budding yeast and fission yeast. 

Implicated in 

Colorectal carcinoma 

Note 

Knockdown of CCRK inhibits HCT116 cell 

proliferation (Wohlbold et al., 2006). A small molecule 

kinase inhibitor (RGB-286147) that targets CCRK has 

been shown to promote HCT116 cell death in the 

absence of cell cycle progression (Caligiuri et al., 

2005). 

 

Glioblastoma multiforme 

Note 

In 14 of 19 (74%) human high-grade glioblastoma 

multiforme patient samples, CCRK mRNA expression 

levels are more than 1.5-fold higher than those of 3 

normal brain tissue samples. By contrast, only 2 of 7 

(29%) low-grade glioma samples have elevated CCRK 

expression. Knockdown of CCRK suppresses glioma 

tumor growth in mouse xenograft model. CCRK 

knockdown also inhibits glioblastoma cell proliferation 

via G1/S-phase arrest and reduction of CDK2 

phosphorylation in vitro. Overexpression of CCRK 

induces malignant transformation of non-tumorigenic 

glioblastoma cells (U138) both in vitro and in vivo (Ng 

et al., 2007). 

Ovarian carcinoma 

Note 

By CCRK immunohistochemical staining of CCRK in 

ovarian tissue microarray, CCRK is overexpressed in 

65/122 (53%) invasive ovarian carcinoma patient 

samples, as compared with 22 normal ovarian surface 

epithelium samples. In 12 pairs of primary ovarian 

carcinoma and adjacent normal tissue specimens, 

CCRK expression is elevated in 6 (67%) ovarian 

carcinoma samples. Ectopic expression of CCRK 

promotes tumor growth in vivo and ovarian carcinoma 

cell proliferation in vitro via upregulation of cyclin D1 

(Wu et al., 2009). 

Prognosis 

CCRK expression is positively correlated with 

ascending histological grade and advanced 

clinicopathologic features. It is also an independent 

biomarker for shortened survival time of patients with 

ovarian carcinoma. 
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Identity 
Other names: CD151 antigen; GP27; MER2; PETA-3; 

PETA3; PETA3F; RAPH; SFA-1; SFA1; TSPAN24; 

Tspan-24; Tetraspanin-24 

HGNC (Hugo): CD151 

Location: 11p15.5 

Local order: Telomere--PNPLA2--EFCAB4A--

CD151--POLR2L--TSPAN4--Centromere. 

DNA/RNA 

Note 

Information sourced from UCSC Genome Database 

Mar 2006 Assembly (hg18) RefSeq genes and from 

analysis of mouse gene organisation (Fitter et al., 1998) 

and human gene structure (Whittock et al., 2001). 

Description 

5884 bp, 9 exons (7 coding). 

Transcription 

mRNA 1574bp (length may vary for utr alternate 

splicing). 

Pseudogene 

None in humans. 

Protein 

Description 

Size: 253 aa, 28247 Da with a mature protein size of 32 

kDa; pI: pH 7.44. 

Post-translational modifications include disulphide 

bridges and an N-linked glycosylation site in the large 

extracellular loop and 6 palmitoylation sites. 

Expression 

Widely expressed, particularly on epithelial cells, 

endothelial cells, Schwann cells, muscle cells, 

megakaryocytes and platelets. Tissues typically display 

expression restricted to these cell types with lung, 

kidney, spleen, tonsil and cardiac muscle all having 

high levels. Low expression detected on fibroblasts, 

erythrocytes and leukocytes (Sincock et al., 1997). 

Highly expressed (mRNA) in: heart, uterus, lung, 

prostate, liver (adult), spleen, placenta, pancreas. 

Low/no expression (mRNA) in: foetal liver, brain, 

testes, ovaries. 

 

The red bars indicate utr and green bars indicate coding exons. The size of each intron is indicated at the top and each exon below. An 
alternate transcript may be generated from splicing out exon 2 in the 5'utr as indicated with the blue lines.

 



CD151 (CD151 molecule (Raph blood group)) Weidenhofer J, Ashman LK 
 
 
 
 
 

Atlas Genet Cytogenet Oncol Haematol. 2010; 14(6) 531 

 

The red bars indicate transmembrane regions as predicted by TMHMM (Krogh et al., 2001), with the green circles palmitoylation sites 
(Berditchevski et al., 2002). The blue Y indicates an N-linked glycosylation site (Fitter et al., 1995) and the light blue lines indicate 
approximate sites of potential di-sulphide bridges (Seigneuret et al., 2001). 

 

Localisation 

Plasma membrane, endosomes, endothelial cell 

junctions and hemidesmosomes in basal epithelial cells 

(Sincock et al., 1999; Sterk et al., 2000). 

Function 

CD151 is a major component of tetraspanin enriched 

microdomains, which are platforms for assembly of 

membrane signalling complexes (Hemler et al., 2005; 

Charrin et al., 2009). CD151 functions in signal 

transduction through forming direct complexes with 

integrins particularly alpha3beta1, alpha6beta1, 

alpha6beta4 and alphaIIbbeta3, thereby influencing a 

variety of cell functions including motility and 

adhesion which are outlined further below. CD151 also 

affects matrix metalloproteinase activity, with 

overexpression of CD151 in human melanoma cells 

resulting in increased expression of MMP9 (Hong et 

al., 2006). CD151 has been shown to interact with pro-

matrix metalloptroteinase 7 in osteoarthritic cartilage 

and regulate its activity (Fujita et al., 2006). In 

endothelial cells CD151 associates with the matrix 

metalloproteinase MT1-MMP and regulates its 

collagenolytic activity (Yañez-Mó et al., 2008). 

Homology 

Tetraspanin protein family. This protein family has 33 

members in humans and is well conserved throughout 

vertebrates and also present in invertebrates. Key 

characteristics include the presence of 4 transmembrane 

domains with both N- and C-terminals in the 

cytoplasm, conserved cysteine-containing motifs and 

disulphide bonds in the large extra cellular loop and 

charged residues in the transmembrane domains. 
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Mutations 

Note 

Only 3 mutations have been identified in humans to 

date, two (G533A and C511T), are predicted not to 

significantly alter CD151 function and are not 

associated with disease (Karamatic Crew et al., 2004; 

Karamatic Crew et al., 2008). 

Germinal 

Homozygous 1bp insertion, G383, resulting in a 

frameshift at Lys127 and a truncated protein at codon 

140.  

Homozygous G533A substitution resulting in an 

Arg178His mutation.  

Homozygous C511T substitution resulting in an 

Arg171His mutation. 

Implicated in 

Note 

In vitro studies 

In vitro assays on Cd151-null keratinocytes, showed 

lack of migration compared to wild-type keratinocytes 

(Geary et al., 2008). Over-expression and knock-down 

studies of CD151 in various cell lines generally show 

that CD151 promotes migration and adhesion, however 

these finding are influenced by cell type and 

extracellular matrix components and primarily appear 

to be modified by the expression of the integrin 

alpha3beta1 (Berditchevski et al., 2002; Winterwood et 

al., 2006; Liu et al., 2007; Yang et al., 2008). CD151 is 

down-regulated by HIF-1alpha in colon cancer cells 

and is re-expressed upon normal oxygenation. This is 

proposed to allow detachment from the primary tumour 

and re-attachment at sites of metastasis (Chien et al., 

2008). 

Oncogenesis 

Increased CD151 expression may lead to enhanced 

tumour progression and metastatic capacity based on 

enhanced motility, migration and adhesion of CD151 

expressing cells. Antibodies to CD151 blocked in vivo 

metastasis in model systems (Testa et al., 1999; Zijlstra 

et al., 2008). Xenograft breast cancer models involving 

silencing of CD151 showed a delay in tumour 

formation (Yang et al., 2008). CD151 expression is 

increased in metastasis compared to primary tumour 

site in colon cancer (Chien et al. 2008). 

Prostate cancer 

Note 

Immunohistochemical detection of CD151 in a prostate 

cancer tissue specimens had greater prognostic value 

than Gleason grading (Ang et al., 2004). 

Prognosis 

High CD151 expression was indicative of poor 

outcome. 

 

 

Oncogenesis 

High CD151 expression indicated poor survival 

outcome, suggesting a role for CD151 in enhancing 

tumourigenesis or resistance to treatment. Also refer to 

'In vitro studies'. 

Gingival squamous cell carcinoma 

Note 

Real-time PCR analysis of CD151 gene expression 

compared to GAPDH was analysed (Hirano et al., 

2009). Assessment of protein expression by 

immunohistochemistry correlated with gene expression 

however no statistical analyses were performed on 

protein expression. 

Prognosis 

High CD151 expression was indicative of poor 

outcome. 

Oncogenesis 

High CD151 expression indicated poor survival 

outcome, suggesting a role for CD151 in enhancing 

tumourigenesis or resistance to treatment. Also refer to 

'In vitro studies'. 

Colon cancer 

Note 

Real-time PCR analysis of CD151 gene expression 

compared to beta-actin was analysed (Hashida et al., 

2003). Assessment of protein expression by 

immunohistochemistry correlated with gene expression 

however no statistical analyses were performed on 

protein expression. 

Prognosis 

High CD151 expression was indicative of poor 

outcome. 

Oncogenesis 

High CD151 expression indicated poor survival 

outcome, suggesting a role for CD151 in enhancing 

tumourigenesis or resistance to treatment. Also refer to 

'In vitro studies'. 

Hepatocellular carcinoma 

Note 

Real-time PCR analysis of CD151 gene expression 

compared to GAPDH was analysed. Assessment of 

protein expression by immunohistochemistry and 

immunoblotting generally correlated with gene 

expression. CD151 expression was increased in 

hepatocellular carcinomas compared to normal liver 

tissues (Ke et al., 2009). 

Immunohistochemical analysis of tissue microarrays 

identified a positive correlation between CD151 

expression and aggressive histopathological factors 

such as vascular invasion and poor tumour 

differentiation. CD151 expression was also indicative 

of poor outcome (Ke et al., 2009). 
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Prognosis 

High CD151 expression was indicative of poor 

outcome. 

Oncogenesis 

High CD151 expression indicated poor survival 

outcome, suggesting a role for CD151 in enhancing 

tumourigenesis or resistance to treatment. Also refer to 

'In vitro studies'. 

Non-small cell lung carcinoma 

Note 

Real-time PCR analysis of CD151 gene expression 

compared to beta-actin was analysed (Tokuhara et al., 

2001). Assessment of protein expression by 

immunohistochemistry correlated with gene expression 

however no statistical analyses were performed on 

protein expression. 

Prognosis 

High CD151 expression was indicative of poor 

outcome. 

Oncogenesis 

High CD151 expression indicated poor survival 

outcome, suggesting a role for CD151 in enhancing 

tumourigenesis or resistance to treatment. Also refer to 

'In vitro studies'. 

Breast cancer 

Note 

Immunohistochemical analysis of CD151 expression in 

a cohort of invasive ductal carcinoma identified a 

significantly higher risk of death from breast cancer in 

CD151 positive tumours compared to CD151 negative 

tumours. CD151 expression was also positively 

associated with the involvement of regional lymph 

nodes. No associations between CD151 expression and 

other clinical factors including estrogen receptor status 

were found (Sadej et al.,2009).  

Immunohistochemical analysis of CD151 in breast 

tissue Microarrays identified positive correlations 

between CD151 expression and high tumour grade as 

well as negativity for the estrogen receptor. No other 

associations were identified between CD151 expression 

and clinical factors (Yang et al., 2008). Associations 

between CD151 expression and outcome were not able 

to be made due to unavailability of data. 

Prognosis 

High CD151 expression was indicative of poor 

outcome. 

Oncogenesis 

High CD151 expression indicated poor survival 

outcome, suggesting a role for CD151 in enhancing 

tumourigenesis or resistance to treatment. Also refer to 

'In vitro studies'. 

 

 

Pancreatic cancer 

Note 

Immunohistochemical analysis of pancreatic cancer 

cell lines and pancreatic tumours identified high 

CD151 expression associated with tumours/cell lines 

compared to normal tissue. Tumour stroma also 

expressed CD151 (Geiserich et al., 2005). 

Oncogenesis 

Refer to 'In vitro studies'. 

Neovascularisation/pathologic 
angiogenesis 

Note 

Determined from in vivo studies in Cd151-null mice 

and in vitro studies of Cd151-null mouse lung 

endothelial cells (Takeda et al., 2007). Analysis of a rat 

myocardial ischaemia model also showed that viral 

delivery of CD151 can promote neovascularisation 

(Zheng and Liu, 2006). 

Disease 

Cancer, ischaemia 

Oncogenesis 

Lack of Cd151 expression resulted in impaired tumour 

angiogenesis, suggesting that Cd151 may be involved 

in promoting tumour angiogenesis. 

Nephropathy 

Note 

CD151 is expressed normally in the kidney particularly 

in the glomerular basement membrane (Sincock et al., 

1997). 

 

Disease 

Nephropathy in humans (Karamatic Crew et al., 2004). 

Cd151-null mice develop progressive renal failure on 

the FVB/N strain but not the C57BL/6 strain (Sachs et 

al., 2006; Baleato et al., 2008). 

Prognosis 

Loss of CD151 activity leads to chronic renal failure. 

Cytogenetics 

Homozygous frameshift mutation causing a premature 

stop codon (codon 140) due to the insertion of 1bp in 

exon 5 of CD151 (G383). 

Hybrid/Mutated gene 

Resultant protein lacks the integrin binding domain and 

causes null expression of the CD151/MER2 antigen 

(Karamatic Crew et al., 2004). 

Pretibial epidermolysis bullosa 

Note 

The Nephropathy described above is attributed to the  
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same mutation in CD151 and occurs in conjunction 

with pretibial epidermolysis bullosa and deafness 

(Karamatic Crew et al., 2004). 

Wound repair in wild-type mice is associated with an 

up-regulation of Cd151 in the migrating epidermis at 

the wound edge (Cowin et al. 2006). 

Disease 

Pretibial epidermolysis bullosa in humans. 

Defective wound repair in Cd151-null mice (Cowin et 

al. 2006; Geary et al 2008). 

Cytogenetics 

Homozygous frameshift mutation causing a premature 

stop codon (codon 140) due to the insertion of 1bp in 

exon 5 of CD151 (G383). 

Hybrid/Mutated gene 

Resultant protein lacks the integrin binding domain and 

causes null expression of the CD151/MER2 antigen. 

Deafness 

Note 

This loss of function of CD151 is attributed to the same 

mutation in CD151 as that described above for 

nephropathy and pretibial epidermolysis bullosa, with 

all 3 disorders occurring in the same patients 

(Karamatic Crew et al., 2004). 

Prognosis 

Progressive deafness occurring by early adulthood. 

Cytogenetics 

Homozygous frameshift mutation causing a premature 

stop codon (codon 140) due to the insertion of 1bp in 

exon 5 of CD151 (G383). 

Hybrid/Mutated gene 

Resultant protein lacks the integrin binding domain and 

causes null expression of the CD151/MER2 antigen. 

 

Hemostasis 

Note 

As assessed in Cd151-null mice, loss of Cd151  

caused increased bleeding time and decreased clotting 

ability, suggesting endothelial and/or platelet cell 

functional defects. Cd151-null mice did not show any 

overt physiological differences unless challenged 

(Wright et al., 2004). Further in vitro analysis of 

Cd151-null platelets showed impaired functions 

relating to aggregation, spreading and clot retraction 

(Lau et al., 2004). 
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Identity 

Other names: MTCLIC; P64H1; CLIC4L; H1; huH1 

HGNC (Hugo): CLIC4 

Location: 1p36.11 

DNA/RNA 

Description 

CLIC4 gene comprises of 6 exons spanning a region of 

about 99 kb on human chromosome 1p36. 

Transcription 

CLIC4 gene codes for a protein of 253 amino acids 

length corresponding to molecular weight of about 29 

kDa. No alternative isoforms of CLIC4 has been 

reported. 

Protein 

Description 

CLIC4 is a putative chloride channel for intracellular 

organelles. The human protein consists of 253 amino 

acids with an N-terminal transmembrane domain and 

C-terminal nuclear localisation signal. 

Expression 

Ubiquitous and induced by p53, TNF-alpha and c-myc. 

Localisation 

It is localised in cytoplasm and mitochondria in 

primary keratinocytes and translocated to nucleus upon 

cellular stress. 

Function 

CLIC4 has been shown to regulate TGF-beta signaling. 

It has been shown to translocate to the nucleus in a 

Schnurri-2 dependent manner and nuclear CLIC4 has 

been shown to subsequently stabilise phospho- Smad2 

and Smad3. 

CLIC4 has been implicated in angiogenesis. It has been 

shown to be involved in acidification of vacuoles along 

the cell hollowing tubulogenic pathway. 

CLIC4 has been shown to be expressed in 

myofibroblasts and inhibit motility of MEF/3T3 cells. 

CLIC4 has been implicated in Myc-induced apoptosis. 

It was identified as a candidate gene after protein 

expression analysis during Myc-induced apoptosis. 

Myc has been shown to bind to CLIC4 promotor and 

activate its transcription. 

 

 

CLIC4 gene consists of 6 exons. The number between the exons indicate the length in kilo bases of intervening introns. 
 

 

Domain organisation of CLIC4. TM indicates transmembrane domain and NLS represents nuclear localisation signal. 
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Homology 

CLIC1, CLIC2, CLIC3, CLIC5 and CLIC6. 

Implicated in 

Various cancer 

Note 

Expression analysis on a human tumour array has 

shown that CLIC4 expression is dimished in several 

tumour types including breast, ovary and kidney. 

CLIC4 expression has also been shown to be 

upregulated in some tumours. 

In matched tissue arrays, CLIC4 was predominantly 

nuclear in normal epithelial tissues but not cancers. As 

tumours progressed CLIC4 expression became 

undetectable in tumour cells but increased in stromal 

cells. 

Sequence analysis of CLIC4 cDNA of 60 human 

cancer cell lines (NCI60) and EST database analysis 

failed to reveal mutations in CLIC4 gene. 
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Identity 
Other names: Cystatin-6; Cystatin-E; Cystatin M; 

Cystatin E/M 

HGNC (Hugo): CST6 

Location: 11q13.1 

Local order: The human CST6 gene is located on the 

long arm of chromosome 11 at 11q13.1. It corresponds 

to a total DNA sequence of about 1,515 bp. Most other 

human cystatin genes (i.e., the genes for CST1 to CST9 

and CST11) cluster on chromosome 20p11. 

Note 

Misleading annotations: 

-CSTB or CSTb (is a different cystatin gene) 

-Yeast CST6 (is an unrelated gene encoding a yeast 

transcription factor) 

-Mouse cystatin E1 (mouse CRES-like) 

-Mouse cystatin E2 (mouse testatin-like) 

DNA/RNA 

Note 

The human CST6 gene is a tiny gene. Together with its 

basic promoter, it spans about 2,500 bp and is flanked  

in the 5' upstream region by an inverted, 290-bp Alu-

Sx(Sq) repeat. 

Description 

Like most cystatin genes, the human CST6 gene is 

organized into three exons separated by two introns. 

Exon-1 is 294-bp long, contains the 5'-untranslated 

region (5'-UTR) and the starting ATG codon of the 

coding sequence. Exon-2 is 126-bp long. Exon-3 is 

188-bp long, contains a TGA stop codon, the 3'-UTR as 

well as a typical AATAAA polyadenylation signal 

followed by 20 bp. Intron-1 and intron-2 are 541- and 

365-bp in length, respectively. 

Transcription 

The human CST6 gene is transcribed into a single 

mRNA species of about 607 nucleotides (nt). There are 

no alternate transcript species. The transcript is 

composed of a 5'-UTR of 53 nt, a coding sequence of 

447 nt, and a 3'-UTR of 107 nt. A palyndromic 

structure located some 360 nt downstream of the AUG 

initiation codon (or 26 codons upstream of the TGA 

stop codon) seems to be responsible for some sequence 

variation in that region. Indeed, several expressed 

sequence tags (ESTs) differ primarily if not solely in 

that region of the mRNA sequence. 

 

Figure 1: In the above diagram are represented the various genes flanking the human CST6 gene. More information on these genes can 
be found at: Entrez Gene. 

http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=1474&ordinalpos=1&itool=EntrezSystem2.PEntrez.Gene.Gene_ResultsPanel.Gene_RVDocSum
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Figure 2: Structure of the human CST6 gene. Exon-1 contains the 5'-UTR (in blue) and the starting ATG codon of the coding sequence 
(in magenta). Exon-3 contains a TGA stop codon and the 3'-UTR (in blue). More information on the CST6 gene organization can be 
found at: Entrez Gene. 

 

Transcription from the CST6 gene promoter seems to 

be both constitutive and regulated. Numerous potential 

SP1 binding sites (TESS/TransFac database v4.0) in the 

CST6 promoter may account for a low to moderate 

basal promoter activity in many tissues.  

High expression occurs only in a few tissues such as 

the skin, placenta, ovary, pancreas and the lungs. A 

quite widespread expression of CST6 is also supported 

by data extracted from gene expression libraries (GEO, 

GeneNote, GNF Symatlas, CGAP, EST, SAGE, and 

UniGene eNortherns).  

However, there are some conflicting data in the 

literature suggesting that the CST6 mRNA is expressed 

in a tissue-specific manner mainly if not exclusively in 

the skin. 

Expression from the human CST6 gene is 

epigenetically silenced in several tumor types (see 

below). The 5'-end of the CST6 gene including exon-1 

has an unusually high (Ó 70%) content in G and C 

nucleotides. As a matter of fact, a typical CpG island 

spans across the transcription start site (bp +1) from bp 

-186 to bp +320 and encompasses all of exon-1. Not 

surprisingly, treatment of tumor cells by histone 

deacetylase or DNA methyltransferase inhibitors 

results in 're-expression' of CST6 at levels similar to 

those seen in the normal or benign counterparts. 

The unusual GC content (~ 80%) of the 5'-UTR of the 

mRNA suggests that CST6 expression might also be 

regulated at the translational level by eIF-4E. 

Pseudogene 

No pseudogenes have been identified. 

Protein 

Note 

The CST6 gene product, Cst6, is a typical secretory 

protein. It is synthesized as a preprotein with a patent 

N-terminal signal sequence. The protein is translocated 

into the rough endoplasmic reticulum where about 30-

50% of the nascent Cst6 polypeptides are N-

glycosylated. Upon SDS-PAGE, Cst6 harvested from 

most cell secretions migrates as two major forms, a 14-

kDa unglycosylated and a 17- to 18-kDa glycosylated 

form. 

Description 

The three-dimensional organization of Cst6 (assuming 

it is similar to that of chicken egg white cystatin shown 

in figure 4) is that of a compact five-pleated beta-sheet 

that partially wraps around a central alpha-helix. It is 

not clear what role glycosylation of residue N137 

fulfills. Perhaps, N-glycosylation promotes binding of 

the protein to cells and entry into the 

endosomal/lysosomal system where Cst6 can interact 

with target proteases. 

Expression 

Cst6 is a cell-secreted protein. In vitro, the majority (> 

95%) of the protein accumulates in the media 

conditioned by the cells. In cells that overexpress Cst6, 

prominent labeling of the Golgi apparatus can be seen 

using indirect immunofluorescence cytochemistry. 

Localisation 

In the human skin, where localisation of Cst6 has been 

most carefully explored, the protein is detected in the 

stratum granulosum of the epidermis, in the outer root 

sheet of hair follicles, in the secretory coil epithelium 

of sweat glands, and in the inner, mature cells of 

sebaceous glands. 

Function 

Protease Inhibitor Function: The most widely 

accepted function of cystatins is that of protease 

inhibitors. The name 'cystatin' further reminds us that 

these endogenous protease inhibitors target cysteine 

proteases. In contrast to metallo- and serine proteases 

that are mostly secreted proteases, most cysteine 

proteases are confined within cells where optimal pH 

and redox conditions favor their enzymatic activity. 

Thus, the majority of intracellular cysteine proteases 

are inactivated by oxidizing conditions outside the 

cells. Nevertheless, it is believed that cystatins inhibit 

cysteine proteases much faster than do oxidizing 

conditions and, thereby, prevent excessive tissue 

damage during the release of lysosomal enzymes. 

Among the various types of intracellular cysteine 

proteases, cystatins seem to target preferentially 

endosomal/lysosomal cysteine proteases of the papain 

family, such as cathepsin B, cathepsin K/O2, cathepsin 

L, cathepsin L2/V and cathepsin S.  

http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=1474&ordinalpos=1&itool=EntrezSystem2.PEntrez.Gene.Gene_ResultsPanel.Gene_RVDocSum
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Figure 3: The above diagram depicts the primary structure of the Cst6 precursor. The first 28 amino acids represent a canonical signal 
peptide. The mature and secreted Cst6 molecule (in blue) contains two disulfide bonds (-S-S-), one N-glycosylation site (N137-CHO), and 
two distinct binding sites for lysosomal cysteine proteases (purple and yellow boxes). The purple boxes represent the amino acids 
(RMVG, QLVAG and PW) that are involved in the binding and inhibition of the cathepsins B, K, L, L2/V or S. The yellow box represents 
the critical amino acid (N64) for binding and inhibition of lysosomal Asn-endopeptidase (AEP or mammalian legumain). 
Figure 4: Typical crystal structure of a secretory cystatin. The coordinates for the crystal structure of chicken egg white cystatin (1CEW) 
were obtained from the PDB database. A 3D-model of the cystatin was then generated using SwissPDB-Viewer. The N- and C-termini of 
the protein are marked by 'N' and 'C', respectively. The two conserved disulfide bonds are highlighted in yellow. The amino acids that are 
part of the two distinct binding sites for lysosomal cysteine proteases are labeled by purple and yellow boxes as described in the legend 
to figure 3. N64 and W135 are particularly important in this regard and are highlighted in blue. The amino acid numbering refers to that of 
the Cst6 preprotein, i.e., the protein with a 28-amino acid signal peptide (not present). 

 

Some cystatins such as Cst6 are double-headed 

inhibitors and have a second inhibitory site, i.e., N64 in 

figures 3 and 4 above. Via this alternate inhibitory site, 

Cst6 is capable of binding and inhibiting legumain-type 

cysteine proteases such as AEP/mammalian legumain. 

Cystatins do not inhibit caspases and calpains seem to 

be regulated in a different manner. Little is known 

about the inhibitory potential of cystatins towards other 

types of intracellular cysteine proteases. 

Epithelial barrier function:  One important function of 

Cst6 seems to be in the terminal differentiation of 

stratified squamous epithelial cells and in the formation 

of cornified envelops. Indeed, ichq mice with a null 

mutation in the cst6 gene develop neonatal  

abnormalities in skin cornification and desquamation 

that resemble Harlequin ichthyoses in humans. 

However, no alterations in the CST6 gene were found 

in the DNA of patients with Harlequin ichthyosis.  
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In mice, the lack of Cst6 function leads to severe 

dehydration and neonatal lethality. Before serving as a 

substrate to transglutaminases and being deposited into 

cornified cell envelops, Cst6 is believed to be important 

in fine-tuning the enzymatic activities of 

endosomal/lysosomal cysteine proteases such as 

cathepsin L, cathepsin L2/V and AEP/mammalian 

legumain. Deregulated activity of these proteases could 

lead to abnormal activation of transglutaminases and 

disorders in cornification. 

Homology 

CST6 Gene orthologs: 

 

Species 
UniGene 

ID 
Chromosome Homology 

Human Hs.139389 11q13.1 100%/149 aa 

Pig Ssc.9061 2p16-17 78%/149 aa 

Cow Bt.5468 29 75%/148 aa 

Dog Cfa.23670 18 71%/149 aa 

Rat Rn.9609 1q43 70%/149 aa 

Mouse Mm.36816 19 A (4.0 cM) 69%/149 aa 

Worm Cel.5518 V 13%/143 aa 

Mutations 

Note 

In 2004, CST6 was coined as a novel candidate tumor 

suppressor gene for breast carcinoma. Since then, this  

gene has been identified as a tumor suppressor gene for  

other cancers such as cancers of the breast, prostate, 

brain, lung, cervix and melanocytes. In most tumor 

tissues, CST6 seems to be epigenetically silenced rather 

than deleted or mutated. However, in one case (see 

below) more profound alterations in the human CST6 

gene have been observed. 

Cervical cancer: One out of 19 primary tumors revealed 

homozygous deletion of exon-1 sequences. Six other 

primary tumors exhibited point mutations in the CDS 

of the CST6 gene. Two of these mutations (M34T and 

L131F) occurred in proximity to the consensus binding 

sites for cathepsins (figure 6) and resulted in 

diminished affinity of the mutant inhibitor for cathepsin 

L. 

Germinal 

No germ-line mutations have been detected. 

Implicated in 

Cancer progression  

Loss of heterozygosity (LOH) affecting the locus 

11q13 is quite common in cancers. This locus indeed 

harbors several tumor or metastasis suppressor genes 

such as BAD, MEN1, BRMS1, RASGRP2, GSTP1 and 

CST6. 

In a study using differential RNA display it was 

initially established that human breast cancer cell lines 

exhibited lack or reduced CST6 expression when 

compared to immortal or normal counterparts. CST6 

was coined a novel candidate tumor suppressor gene 

for breast cancer on October 1st, 2004.  

 

 

Figure 5: Degree of amino acid homology among human cystatin (in %). 
Cst3, cystatin C; Cst5, cystatin D; Cst6, cystatin E/M; Cst7, cystatin F/leukocystatin; Cst4, cystatin S; Cst2, cystatin SA; Cst1, cystatinSN; 
and Cst8, CRES. 
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Figure 6: This diagram depicts locations of six point mutations and one deletion affecting the CST6 gene that have been observed in 
cancer specimens. Amino acid numbering refers to the precystatin sequence as for figure 3. 
 

Since then, several groups have reported on the lack or 

diminished expression of CST6 in various cancer types 

(listed below). However, some groups also observed 

overexpression of CST6 in select cancer types (listed 

below). One of the challenges in current research on 

CST6 is to define the proteases targeted by CST6 and 

their precise role in the progression of the disease. 

Cancer types with diminished CST6 
expression 

Breast cancer 

Note 

Using various approaches, several groups have 

independently established that the human CST6 gene 

promoter is epigenetically silenced in breast 

carcinomas when compared to normal breast tissue. In 

one study, 24/40 (60%) breast carcinomas exhibited 

CST6 promoter hypermethylation as compared to 7/28 

(25%) normal breast tissue samples. In another study, 

25/45 (56%) of primary tumors and 17/20 (85%) of 

lymph node metastases expressed reduced levels of 

CST6 when compared to normal breast tissues. CST6 

promoter hypermethylation could be demonstrated in 

3/11 (27%) primary tumors and 8/12 (67%) lymph 

node metastases. In 35% of neoplastic lesions, no 

association could be established between the loss of 

CST6 expression and promoter methylation. This 

suggests that besides promoter hypermethylation other 

(structural or regulatory) mechanisms might operate to 

prevent CST6 expression in cancer cells. 

Most established breast cancer cell lines also exhibited 

little or no CST6 expression (21MT-1, MCF-7, T-47D, 

ZR-75-1, Hs578T, SK-BR-3, MDA-MB-157, MDA-

MB-361, MDA-MB-435S, MDA-MB-436, MDA-MB-

453, BT-474 and BT-549). Some established breast 

cancer cell lines expressed moderate levels of CST6 

(MDA-MB-231, MDA-MB-415 and MDA-MB-468) 

and only few (21PT, 21NT, 21MT-2 and BT-20) 

expressed levels of CST6 similar to normal or immortal 

counterparts (70N and 80N or 76N, MCF-10A, MCF-

10AT and MCF-12A, respectively). Treatment of 

CST6-negative tumor cells by the histone deacetylase  

 

inhibitor Trichostatin A (TSA) or the DNA 

methyltransferase inhibitor 5-Aza-2'-deoxycytidine (5-

Aza) results in 're-expression' of CST6 at levels similar 

to those seen in the normal or benign counterparts. 

Overexpression of CST6 in breast cancer cells (MDA-

MB-435S and T-47D) is associated with diminished 

tumor cell colony formation, proliferation, migration, 

Matrigel invasion and orthotopic tumor growth in scid 

mice. 

Prostate cancer 

Note 

In a study of matched pairs of normal/cancer  

tissues, loss of CST6 expression was observed in 18/20 

(90%) prostate cancers. Similarly, only 6% of prostate 

cancers exhibited strong Cst6 immunohistochemical 

staining as compared to 63% of normal tissues. 

Among prostate cancer cell lines, RWPE-1 and DU-

145 express high and moderate levels of CST6, 

respectively, whereas LNCaP, PC-3 and PC-3M 

express little to no CST6. Treatment with TSA leads to 

strong upregulation of CST6 expression in all three cell 

lines. In contrast, treatment with 5-Aza up to five days 

had no effect. Further studies using methylation-

specific PCR showed that prostate cancer cell lines and 

tissues had lower promoter methylation than normal 

tissues. DNA hypermethylation of the CST6 promoter 

does therefore not account for the silencing of CST6 

expression in prostate cancer. Instead, histone 

deacetylation and chromatin remodeling seem to be 

responsible for diminished CST6 expression. 

Similar to breast cancer cells, forced expression of 

CST6 in prostate cancer cells (PC-3) leads to 

diminished tumor cell proliferation and Matrigel 

invasion. In addition, overexpression of CST6 also 

selectively reduces expression of the target enzyme, 

cathepsin B. Conversely, silencing of CST6 expression  
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in a CST6-positive prostate cancer cell line (RWPE-1) 

leads to the exact opposite results from overexpression. 

In mice, orthotopic injection of PC-3 cells 

overexpressing CST6 resulted in considerably smaller 

tumors when compared to vector controls. The CST6 

tumors expressed reduced levels of cathepsin B. 

Lung cancer 

Note 

Two groups have recently reported on the epigenetic 

silencing of the CST6 gene in non-small cell lung 

cancer (NSCLC) using genome-wide expression 

profiling. In one study, 2/5 (40%) primary tumors and 

1/5 (20%) normal lung tissues exhibited CST6 

promoter methylation. In the other study, the numbers 

were respectively 10/19 (53%) and 2/15 (13%). 

NSCLC cell lines that express little or no CST6 are the 

following: A-427, A-549, NCI-H23, NCI-H522, NCI-

H1299 and NCI-H460. Three cell lines expressed 

moderate to high levels of CST6 (NCI-H322, NCI-

H358 and NCI-H292). In all nine above cell lines, 

CST6 expression could be increased to normal levels 

by a combined treatment of the cells with TSA and 5-

Aza. 

Overexpression of CST6 in lung adenocarcinoma A-

549 cells resulted in a > 50% reduction in colony 

formation in vitro compared to vector controls. 

Cervical cancer 

Note 

One study recently reported on the lack of CST6 

expression in 9/11 (82%) primary squamous cell 

carcinomas of the cervix, but expression of the gene in 

5/5 (100%) normal cervical tissues as well as in normal 

lung, thyroid, kidney, brain, ovary, uterus, smooth 

muscle and connective tissues. Two out of 11 (18%) 

primary tumors (one of which being an 

adenocarcinoma) expressed low levels of CST6, which 

might be due to contamination of the tumor material by 

adjacent normal tissue. 

Cervical cancer cell lines such as HeLa (D98/AH-2), 

C41, SiHa, Caski, HT3 and C33A all lack expression of 

CST6. Treatment of tumor cells by 5-Aza and/or TSA 

results in 're-expression' of CST6 at levels similar to 

those seen in normal tissues. Similar to the situation in 

prostate cancer cells, some cell lines (SiHa and HT3) 

respond only to TSA treatment. Caski, C33A and C41 

cells exhibit both unmethylated and hypermethylated 

CST6 promoters whereas HeLa cells has 

homogenously hypermethylated CST6 promoters. 

Overexpression of CST6 in HeLa and SiHa cells leads 

in both cases to a reduction in the number and size of 

colonies forming in soft agar and in cell proliferation. 

Another consequence of the forced expression of CST6 

in HeLa cells is a reduction in intracellular levels of the  

 

 

 

target protease, cathepsin L, possibly explaining the 

reduced growth of the CST6 overexpressing cells. 

Head and neck squamous cell 
carcinoma (HNSCC) 

Note 

Comparison of the gene expression profiles 

(HuFL6800) of two matched pairs of primary and 

metastatic human oropharyngeal SCC cell lines (MDA-

686TU and LN) revealed relative overexpression of 

CST6 in the metastatic cell line. Immuno-cytochemical 

analysis further showed that overexpression of CST6 in 

the metastatic cell line was not homogenous. Instead, 

small clusters of cells overexpressed the protein 

whereas the majority of cells expressed little or no 

CST6. Further studies using RNA interference 

indicated that loss of CST6 expression in MDA-686LN 

promoted proliferation of the cells and Matrigel 

invasion. 

In another study, human SCC-25 cells were treated 

with the vitamin D3 analog EB1089 for various times 

and the effect of this drug treatment on gene expression 

analyzed using HuGene FL oligo microarrays. In this 

study, CST6 expression was found to increase > 30-

fold over a 24-hr period. Overall, EB1089 treatment 

reversed the malignant phenotype of SCC-25 cells and 

induced keratinocytic differentiation. 

Brain cancer 

Note 

One study reported on downregulation of CST6 

expression in 15/17 (88%) brain tumors, which 

included 7/9 (78%) multiform glioblastomas (MG). 

Moreover, MSP analysis demonstrated CST6 promoter 

methylation in 17/30 (57%) brain tumors. These latter 

included 14/19 (74%) MGs. In comparison to brain 

tumors, normal brain tissue exhibited only 6% CST6 

promoter methylation. 

CST6 expression and methylation status was also 

analyzed in six glioblastoma cell lines: LN-229, LN-18, 

T98G, DBTRG-05MG, U-87MG and U-118MG. All 

six cell lines expressed little or no CST6. In addition, 

all cell lines had quite homogenously hypermethylated 

CST6 promoters. Re-expression of CST6 could be 

triggered with 5-Aza alone. 

Transfection of T98G, LN-229 and U-87MG cells with 

a mammalian CST6 expression vector resulted in a 

modest (20-25%) suppression of T98G and LN-229 

cell growth when compared to vector controls. Forced 

expression of CST6 in U-87MG cells had no effect on 

their capacity to form colonies and proliferate. 

In conclusion, CST6-mediated suppression of tumor 

cell growth seems to be most pronounced in cells of 

epithelial origin, i.e., in cells developing multiple cell-

to-cell communications and elaborating a basement 

membrane. 
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Cancer types with increased CST6 
expression 

Squamous cell carcinoma of the skin 

Note 

Squamous cell carcinoma (SCC) of the skin versus 

psoriasis. 

CST6 is highly expressed in the normal human skin, 

which might explain why no further increase in 

expression could be detected in SCC. However, a five- 

to six-fold differential expression of CST6 was 

observed when SCC was compared to psoriatic skin. 

Differential expression of CST6 was accompanied by a 

similar differential expression of one of its target 

proteases, cathepsin L2/V. 

Pancreatic cancer 

Note 

CST6 was identified as an upregulated gene in several 

genome-wide expression studies. One study used 

microarray analysis to profile gene expression in 

pancreatic adenocarcinomas (T=10), pancreatic cancer 

cell lines (C=7), chronic pancreatitis (P=5) and normal 

pancreas (N=5). According to this study, CST6 levels 

change 20-, 20- and 24-fold in T/N, T/P and C/N, 

respectively. In another study using a similar approach 

(oligo microarray) the T/N ratio was found to be 4.4-

fold and upregulation of CST6 was not observed using 

other platforms such as SAGE or cDNA-based 

microarrays. Instead, among six genes that were 

consistently overexpressed across all three platforms 

was one of the major CST6 targets, cathepsin L2/V. 

In yet another study using a cDNA microarray, CST6 

was found to be overexpressed in 18 microdissected 

pancreatic ductal adenocarcinomas (PDAC) when 

compared to normal ductal epithelial cells. Subsequent 

silencing of CST6 expression in a PDAC cell line (PK-

59) reduced colony formation and cell proliferation. 

Conversely, overexpression of CST6 in a CST6-

negative PDAC cell line (KLM-1) promoted tumor 

growth in nude mice. Likewise, addition of 

recombinant human CST6 to the growth medium of 

KLM -1 cells promoted their proliferation in a dose-

dependent manner. Engineered CST6 variants lacking 

either N-glycosylation (N137D, figure 3) or with an 

altered protease binding site (deletion of MVG38, 

figures 3 4) did not have any effect on cell proliferation 

suggesting that both N-glycosylation and protease 

specificity are required for oncogenic activity of CST6. 

Thyroid cancer 

Note 

Initial immunohistochemical studies found positive 

staining for CST6 in 80% (8/10) of papillary thyroid 

carcinomas (PTC) and 73% (11/15) of benign thyroid 

lesions. Independent studies established a strong 

correlation between CST6 expression, PTC and BRAF 

(V600E) mutational status. CST6 expression was also 

associated with PTC lymph node metastasis. 

Ovarian cancer (OvCA) 

Note 

In order to better define the molecular profiles of the 

four major histological types of OvCAs (clear cell, 

mucinous, endometrioid, and serous), a microarray 

analysis was performed on 113 human specimens. 

Expression of CST6 was found to be on average 3.8-

fold higher in clear cell OvCAs when compared to 

other histological types. It is interesting to note here 

that more than one-half of clear cell OvCAs do not 

exhibit tumor invasion at presentation. 

Breakpoints 

Note 

A 300-kb region flanked by the markers D11S4908 and 

D11S5023 and harboring the CST6 gene has been 

identified as the minimal tumor deletion on 11q13 in 

cervical cancer cell lines and primary cervical tumors. 

This region was reported to contain a high density of 

DNA repeats rendering it fragile and prone to potential 

DNA breaks and carcinogenesis. A rare fragile site 

FRA11A overlaps indeed with this region. 
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Identity 
Other names: DDX9; LKP; NDHII; RHA; NDH2; 

leukophysin 

HGNC (Hugo): DHX9 

Location : 1q25.3 

DNA/RNA 

Description 

The gene spans 48.5 kb and is composed of 27 exons. 

Transcription 

Transcription start is 163 bp upstream of first ATG of 

the DHX9 ORF. The translation start site is located in 

exon 2 and there is a sole isoform ubiquitously 

expressed. 

Pseudogene 

DHX9 pseudogene (DHX9P) is located at 13q22. 

Protein 

Description 

Monomeric 140 kDa protein. Human DHX9 is 1270 

amino acids. It contains an helicase catalytic  

domain flanked by two double-stranded RNA binding 

domains (dsRBD) at the N-terminus and an RGG-box 

at the C terminus. A bidirectional nuclear transport 

domain is located at the C terminus. 

Expression 

All tissues tested, ubiquitous expression. 

Localisation 

DHX9 shuttles between the nucleus and the cytoplasm. 

Function 

DHX9 is a nucleic-acid helicase that unwinds double-

stranded DNA and RNA in a nucleotide dependent 

manner. It acts as a transcriptional coactivator which 

stimulates transcription by interacting with the 

transcriptional coactivator CBP/p300, the breast cancer 

protein BRCA1, the RNA polymerase II and has an 

important role in the assembly of STAT6 

transcriptosome. 

DHX9 plays a role in regulating chromatin structure by 

interacting physically and functionally with 

topoisomerase IIa. 

It mediates the attachment of nuclear ribonucleoprotein 

complexes to actin filaments, which may be related to 

RNA processing and transport.  

 

 

Structure of DHX9. dsRBD, double-stranded RNA binding domain; RGG, arginine and glycine-rich region; NTD, nuclear transport 
domain. 
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DHX9 interacts with the survival motor neuron which 

plays a role in the assembly and regeneration of small 

nuclear ribonucleoproteins and spliceosomes. 

DHX9 acts as a nuclear shuttle protein promoting the 

export of mRNA transcripts through binding to TAP 

and HAP95. 

In the cytoplasm, DHX9 is preferentially associated 

with actively translating polyribosomes and is 

necessary for efficient translation of RNAs that contain 

a highly structured 5'UTR. 

DHX9 might be necessary for maintaining genomic 

stability as it plays a role in promoting the DNA 

processing function of WRN. Overexpression of a 

truncated DHX9 peptide prevents normal BRCA1 

function, such as BRCA1 association with nuclear foci 

following DNA damage. DHX9 associates with 

gH2AX after DNA damage, suggesting a role for 

DHX9 in DNA repair. 

DHX9 is also necessary for early embryonic 

development in mice. 

Homology 

Sequence analysis revealed that DHX9 contains seven 

helicase core motifs that are conserved among the 

DEX[D/H] helicase superfamily. DHX9 is highly 

conserved among man, cow, mouse, worm, and fruit 

fly.  

Mutations 

Note 

DHX9 truncating mutations were reported to affect the 

interaction with BRCA1 and RNA polymerase II, and 

to result in decreased transcriptional activity of 

BRCA1. 

In mammals, DHX9-knockout mice are embryonic 

lethal for homozygous DHX9 mutants. DHX9 is thus 

necessary for early embryonic development in mice. It 

was also suggested that DHX9 is required for the 

survival and differentiation of embryonic ectoderm. 

DHX9 maps to chromosome 1q25 near a major 

susceptibility locus for prostate cancer. 

Implicated in 

Lung cancer 

Note 

DHX9 is over-expressed in tumor samples compared to 

normal lung tissues. There was a tendency for higher 

expression levels in small cell lung cancer compared to 

non-small cell carcinomas. 

Prognosis 

There was no correlation with tumor stage and survival. 

Breast cancer 

Note 

Involvement of DHX9 in breast cancer susceptibility 

was analyzed in a cohort of breast cancer individuals  

from non-BRCA1/BRCA2 French Canadian families. 

This study did not identify any deleterious truncating 

mutation or aberrant splicing in the DHX9 gene. It was 

concluded that studies on much bigger cohorts are 

needed to fully evaluate the association of variants 

identified with breast cancer risk. 

Systemic lupus erythematosus (SLE) 

Note 

Anti-DHX9 is a new serologic marker for SLE. The 

production of anti-DHX9 may depend on a process 

restricted to early SLE, or it may be highly sensitive to 

treatment. 

Disease 

Systemic lupus erythematosus (SLE) is a largely 

genetically based disease in which environmental 

factors are also involved. SLE is an autoimmune 

disease characterized by autoantibody production and 

involvement of multiple organ systems. Variable 

manifestations and outcome reflect the clinical 

heterogeneity of the disease. It is characterized by acute 

and chronic inflammation of various tissues of the body 

including joints, kidneys, mucous membranes, and 

blood vessel walls. 

Prognosis 

Among patients with SLE, anti-DHX9 was common in 

young patients and at an early stage of the disease. 
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Identity 

Other names: EIF3S5; eIF-3-epsilon; eIF3-epsilon; 

eIF3-p47; eIF3f; eIF3 subunit p47; p47 

HGNC (Hugo): EIF3F 

Location: 11p15.4 

Note: eIF3f is one of at least 13 subunits comprising 

the eukaryotic initiation factor 3 (eIF3) complex. 

DNA/RNA 

Description 

10.82kb long. 

Transcription 

8 exons; transcript length: 3,228 bps; 1073 bp coding 

sequence. 

Pseudogene 

Chromosome 2 from 58,332,079 to 58,333,164 bp 

(AC007250.3, Ensembl). 

Protein 

Description 

357 amino acids; 37,563.75 Da; Isoelectric point: 

5.122; Mov34/MPN/PAD1 domain. 

Expression 

Ubiquitous. 

Localisation 

Cytoplasmic. There is also evidence of its existence in 

the nucleus. 

Function 

eIF3f is a subunit of eIF3 complex and is highly 

conserved among species. eIF3f interacts with the 

caspase-processed isoform of CDK11 (CDK11
p46

), 

which appears to be a down-stream effector in 

apoptotic signaling. eIF3f can be phosphorylated at 

Ser46 and Thr119 by CDK11
p46

 during apoptosis. The 

phosphorylation of eIF3f contributes to translation 

inhibition and apoptosis. The expression of eIF3f is 

significantly decreased in pancreatic cancer and 

melanoma. Loss of the eIF3f allele has been reported in 

pancreatic cancer and melanoma. Ectopic expression of 

eIF3f causes rRNA degradation, inhibits translation and 

cell proliferation, and induces apoptosis in pancreatic 

cancer and melanoma cells. On the other hand, 

knockdown of eIF3f prevents apoptosis in pancreatic 

cancer and melanoma cells. Recent studies also showed 

decreased cell growth, cell proliferation, colony 

formation and increased apoptosis in eIF3f-

overexpressing NIH3T3 cells. 

Homology 

eIF3f is not found in S. cerevisiae; However it is found 

in Schizosaccharomyces pombe (SPBC4C3.07, 35% 

identity) and in Drosophila Melanogaster (CG9769, 

49% identity). 

Mutations 

Note 

No eIF3f mutations have been reported. 
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Implicated in 

Pancreatic cancer 

Disease 

Decreased eIF3f mRNA and protein was found in 

pancreatic cancer. 

Oncogenesis 

Decreased eIF3f gene expression may result from loss 

of eIF3f gene allele and down regulation of 

transcription. Overexpression of eIF3f in pancreatic 

cancer and melanoma cells can lead to 28S rRNA 

degradation, decreased translation and increased 

apoptosis. On the other hand, knockdown of eIF3f 

attenuates apoptosis in tumor cells. 

Melanoma 

Disease 

Decreased eIF3f mRNA and protein was found in 

melanoma. 

Oncogenesis 

See above. 

Muscle atrophy 

Disease 

eIF3f is a key target of MAFbx, an E3 ubiquitin ligase, 

during muscle atrophy and has a major role in skeletal 

muscle hypertrophy. During muscle atrophy, MAFbx 

targets eIF3f for ubiquitination and degradation. Thus, 

eIF3f appears to be an attractive therapeutic target. 

To be noted 

Note 

eIF3f is a potential tumor suppressor in pancreatic 

cancer and melanoma. Loss of heterozygosity and 

decreased expression of eIF3f has been found in most 

human pancreatic cancer and melanoma specimens. 

Silencing of eIF3f increases cell proliferation and 

colony formation. Restoration of eIF3f expression 

induces cancer cell death. 
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Identity 
Other names: C2orf2; DKFZp686P18118; ELP120; 

EMAP-4; EMAPL4; FLJ10942; FLJ32318; ROPP120 

HGNC (Hugo): EML4 

Location: 2p21 

Note: Gene type: protein coding; Member of the 

EMAP-family. 

DNA/RNA 

Description 

23 exons; DNA-length: 163,173 kb. 

Transcription 

Two transcript variants. 

Protein 

Note 

Strongly expressed during mitosis. 

2 isoforms:  

- Isoform a (= variant 1): longer transcript, 

- Isoform b (= variant 2): shorter transcript, lacks an 

alternate in-frame exon. 

Description 

Weight: 120 kDa. 

At least 2 Domains: HELP motif, WD40 repeat. 

Exon 2 encodes for coiled-coil domain. 

Expression 

Ubiquitous. 

Localisation 

Intracellular. 

Function 

Microtubule binding.  

Necessary for correct microtubule formation (stabilizes 

microtubules). 

May modify the assembly dynamics of microtubules, 

such that microtubules are slightly longer, but more 

dynamic. 

Homology 

Mouse, rat. 

 

 

2p with location of EML4 and ALK relative to each other. 
 
 

  



EML4 (echinoderm microtubule associated protein like 4) Perner S, et al. 
 
 
 
 

Atlas Genet Cytogenet Oncol Haematol. 2010; 14(6) 553 

Implicated in 

Non-small cell lung carcinoma (NSCLC) 

Note 

Mouse models suggest that EML4-ALK fusion might 

play an essential role in NSCLC carcinogenesis. 

EML4-ALK -fusion-transcript is detectable in a low 

amount (frequency between 2,7% and 6,7%) of 

NSCLC-samples and NSCLC-cell-lines. So far, the 

fusion-protein could only be detected by mass-

spectrometry. Immunohistochemical detection of the 

Alk -protein in fusion-transcript-positive primary 

NSCLC-samples is contentious. 

Alk -inhibitors impede proliferation in EML4-ALK -

fusion positive lung cancer cell-lines. In experiments 

with transgenic mice, treatment with ALK-inhibitors 

resulted in reduced tumor mass. 

The role of EML4-ALK -fusion as a specific biomarker 

for NSCLC remains controversial. 

Disease 

NSCLC, frequency between 2,7% and 6,7%. 

Prognosis 

Controversially discussed. Limited informative because 

of low numbers studied so far. 

 

 

Cytogenetics 

EML4-ALK -Fusion. inv(2)(p21p23), other fusion-

mechanisms suggested. 

Hybrid/Mutated gene 

EML4-ALK.  

Abnormal protein  

EML4-ALK = tyrosine-kinase, which is constitutively 

dimerized and thus activated. 

For known fusion partners of ALK, see ALK . For 

example, TPM3, TFG, MYH9, NPM, ATIC, MSN, 

ALO17 are ALK partners in anaplasic large cell 

lymphoma, CLTC in diffuse large cell lymphoma, and 

TPM4 in inflammatory myofibroblastic tumors. 

Breakpoints 
Known variants:  

Variant 1: exon 1-13 (EML4) + exon 20-29 (ALK) 

Variant 2: exon 1-20 (EML4) + exon 20-29 (ALK) 

Variant 3a: exon 1-6a (EML4) + exon 20-29 (ALK) 

Variant 3b: exon 1-6b (EML4) + exon 20-29 (ALK) 

Variant 4a : exon 15 (EML4) + exon 20-29 (ALK) 

Variant 4b : exon 14 (EML4) + linker of 11bp + exon 

20-29 (ALK) 

Variant 5a : exon 2 (EML4) + exon 20-29 (ALK) 

Variant 5b : exon 2 (EML4) + intron 19 (ALK) + exon 

20-29 (ALK) 

 
Fusion of EML4-ALK. a) wild type EML4 and ALK. b) fused EML4-ALK. 

http://atlasgeneticsoncology.org/Genes/ALK.html
http://atlasgeneticsoncology.org/Genes/TPM3ID225.html
http://atlasgeneticsoncology.org/Genes/TFGID281.html
http://atlasgeneticsoncology.org/Genes/MYH9ID481.html
http://atlasgeneticsoncology.org/Genes/NPM1.html
http://atlasgeneticsoncology.org/Genes/ATICID227.html
http://atlasgeneticsoncology.org/Genes/MSNID363.html
http://atlasgeneticsoncology.org/Genes/ALO17ID480.html
http://atlasgeneticsoncology.org/Anomalies/AnaplLargeCelLymphID2103.html
http://atlasgeneticsoncology.org/Anomalies/AnaplLargeCelLymphID2103.html
http://atlasgeneticsoncology.org/Genes/CLTCID360.html
http://atlasgeneticsoncology.org/Anomalies/DLCLID2076.html
http://atlasgeneticsoncology.org/Genes/TPM4ID359.html
http://atlasgeneticsoncology.org/Tumors/MyofibroID5073.html
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Identity 
Other names: ERR-alpha; ERR1; ERRa; ERRalpha; 

ESRL1; NR3B1 

HGNC (Hugo): ESRRA 

Location: 11q13.1 

Note: Size: 11,172 bases; Orientation: plus strand. 

DNA/RNA 

Description 

-Sequence length 11,172 bases; 

-CDS: 2221; 

-Exons: 7. 

Transcription 

Alternative splicing results in transcript variants, but 

these have not yet been well-characterized. 

Pseudogene 

A pseudogene has been reported, ESRRAP, located at 

13q12.1. However, it is possible that this pseudogene is 

not transcribed (Sladek et al., 1997). 

Protein 

Description 

ERRa is a 45.5 kDa, 423 amino acid orphan nuclear 

receptor. Although closely related to the estrogen 

receptors, its transcriptional activity is regulated to any 

significant degree by estrogens. ERRa binds to specific 

DNA sequences within target gene promoters as a 

monomer or homodimer and recruits coactivating 

proteins, the best known of which is PGC-1a. 

Expression 

ERRa is ubiquitously expressed throughout 

development with the highest levels of expression in 

tissues that oxidize fatty acids such as kidney, heart, 

cerebellum, intestine and skeletal muscle (nursa). 

 

Schematic of nuclear receptor structure and function. 
ERRa is a member of the nuclear receptor (NR) superfamily of 
transcription factors and is most closely related to estrogen 
receptor alpha (ERa). The modular structure of NRs consists of 
seven (A-F) domains. The A/B region, which harbors activation 
function 1 (AF-1), is not well-conserved across NRs, but regions 
C and E are highly conserved and harbor, respectively, the 
DNA-binding domain (DBD) and ligand-binding domain (LBD). 
ERRa shares with ERa 68% sequence identity within the DBD 
and 33% within the LBD. The functional regions of the DBD 
have been finely mapped. In addition to two zinc finger motifs, 
this domain contains a Proximal-box (P-box) which determines 
DNA sequence specificity, and a Dimerization-box (D-box), 
which part of the dimerization interface. 

Localisation 

ERRa is thought to be predominately nuclear, although 

recently it has been reported to be perinuclear and 

cytoplasmic in breast cancer tissue (Jarzabek et al., 

2009). 
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Function 

The function of ERRa as a metabolic regulator is 

supported by the observation that erra-null mice 

demonstrate impaired fat metabolism and absorption 

(Luo et al., 2003). It has recently been demonstrated 

that erra-null mice also have a reduced capacity for 

adaptation to hemodynamic stressors. Due to this 

functional deficit, these mice often develop cardiac 

contractile dysfunction. The cardiac remodeling under 

stress in ERR-null mice is due to defects in ATP 

synthesis and reduced phosphocreatine stores, which 

are both characteristic of pathologic cardiac 

hypertrophy (Huss et al., 2007). That the expression of 

ERRa is elevated in exercising muscle and in fasting 

liver specifically implicates this receptor in beta-

oxidation of fatty acids, a metabolic pathway that is 

highly active under these conditions. On a mechanistic 

level, several studies have revealed that ERRa is 

involved in the transcriptional regulation of genes 

required for mitochondrial biogenesis, oxidative 

phosphorylation and fatty acid oxidation (Huss et al., 

2004; Mootha et al., 2004; Dufour et al., 2007).  

Thus far, metabolic studies of ERRa function have 

mainly focused on its role as the downstream effector 

of PGC-1a. PGC-1a is a promiscuous nuclear receptor 

coactivator expressed at low basal levels but induced 

by fasting and other metabolic stresses (Puigserver and 

Spiegelman, 2003). PGC-1beta, a related cofactor, may 

have similar functions, although its expression level is 

not as acutely regulated by variations in energy demand 

(Yoon et al., 2001). Rather than being regulated by 

ligand, the magnitude of ERRa activity is thought to be 

largely dependent on the presence of transcriptional 

coactivators such as PGC-1a and beta. Interest in the 

ERR-PGC-1 regulatory axis was heightened by the 

observation that there is a decrease in both PGC-1a and 

PGC-1beta in the skeletal muscle of patients with 

diabetes and obesity (Mootha et al., 2003). 

Homology 

Sequence analysis reveals that the ERRs and the 

classical estrogen receptors share a high degree of 

homology within their DNA and ligand binding 

domains. In particular, ERRa shares with ERa 

approximately 68% sequence identity within the DNA 

binding domain and 33% within the ligand binding 

domains. This relationship provides a structural basis 

both for the conserved nature of DNA binding and the 

divergence in hormone binding between these two 

receptors. 

Mutations 

Note 

Although over 80 SNPs have been reported, only one 

variant has been shown to carry clinical associations. 

Laflamme et al. reported a polymoprohic hormone 

response element within the ESRRA promoter 

(Laflamme et al., 2005). The variant sequence, present 

in 11% of the population tested (white, premenopausal 

women), included an ERRa responsive element within 

the additional 23-nucelotides. This longer variant was 

associated with higher bone mineral density measured 

in the lumbar spine.  

Kamei et al. reported that the longer variant is 

associated with a significantly higher body mass index 

in their study population of 729 Japanese men and 

women (Kamie et al., 2005). 

Implicated in 

Breast cancer 

Prognosis 

Two independent clinical studies have implicated 

ERRa in breast cancer progression (Ariazi et al., 2002; 

Suzuki et al., 2004). In the first study to link ERRa to 

clinical and pathological characteristics of breast 

cancer, Ariazi et al. found that ERRa expression is 

significantly associated with ERa-negative and 

progesterone receptor-negative tumor status as well as 

Her2 status. Further exploring the relationship between 

ERRa and Her2, Barry et al. demonstrated that ERRa 

transcriptional activity can be enhanced by 

phosphorylation events downstream of Her2 (Barry and 

Giguere, 2005). Building on the association between 

ERRa and negative prognostic biomarkers, Suzuki et 

al. demonstrated a direct correlation between ERRa 

expression and unfavorable breast cancer patient 

outcomes including increased tumor recurrence and 

decreased survival (Suzuki et al., 2004). Importantly, 

the predictive value of ERRa expression was shown to 

be independent of ERa status, confirming that targeting 

the ERRa pathway may be of therapeutic benefit in 

patients with either ERa-positive or ERa-negative 

breast cancer. 

Recently, the function of ERRa has been evaluated in 

xenograft models of breast cancer. Stein et al. 

demonstrated that ERRa is critical for the growth of 

ERa-negative breast cancer through use of RNAi (Stein 

et al., 2008). Furthermore, Chisamore and coworkers 

found that an ERRa antagonist inhibited the growth of 

ERa-positive and ERa-negative breast cancer cell lines 

in a xenograft model (Chisamore et al., 2009). 

Ovarian cancer 

Prognosis 

Sun et al. demonstrated that the ovarian tumors had 

significantly higher ERRa mRNA levels than normal 

ovaries and that high ERRa expression correlated with 

clinically advanced and histologically aggressive 

disease. Furthermore, ERRa expression was shown to 

be an independent prognostic factor for poor overall 

patient survival (Sun et al., 2005). 

Colorectal cancer 

Prognosis 

Analysis of 80 colorectal tumor samples demonstrated 

that higher levels of ERRa mRNA are expressed in 
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tumor tissue versus in the surrounding normal mucosa. 

Furthermore, tumor tissue ERRa mRNA levels are 

positively correlated with increased tumor stage and 

histological grade (Cavallini et al., 2005). 

Prostate cancer 

Prognosis 

Cheung et al. investigated the expression patterns of the 

three ERR family members in normal and malignant 

human prostate epithelial cells and cell lines (Cheung et 

al., 2005). The authors also characterized ERR protein 

expression and localization in normal, dysplastic, and 

malignant prostate tissue (Cheung et al., 2005). They 

concluded that ERRbeta and ERRgamma protein 

expression is reduced in neoplastic prostatic cells 

versus their non-malignant counterparts and suggested 

that each is down-regulated in the progression of 

prostate cancer. The authors went on to measure the 

effect of overexpressing the ERRs on proliferation of 

an immortalized prostate cell line and a prostate cancer 

cell line in vitro and on prostate cancer xenograft 

growth in vivo (Yu et al., 2007; Yu et al., 2008). They 

found that ERRbeta and ERRgamma can inhibit 

proliferation in cells derived from normal and 

malignant prostate epithelium by inducing a G1-S cell 

cycle arrest. Furthermore, activation of either ERRbeta 

or ERRgamma using the agonist DY131 resulted in a 

decreased rate of prostate tumor growth in a xenograft 

model. 

Endometrial cancer 

Prognosis 

Gao et al. explored the extent to which the ERRs are 

involved in ERa-positive endometrial adenocarcinoma 

(Gao et al., 2006). They measured the expression of 

each ERR family member in malignant versus normal 

endometrium and compared the expression levels to 

clinical and pathologic features. They concluded that 

the expression of ERRa mRNA was lower in ERa-

positive endometrial adenocarcinoma versus normal 

endometrium. However, they also found that ERRa 

mRNA expression was positively correlated with tumor 

stage and myometrial invasion. Additionally Gao et al. 

found that the expression of ERRgamma mRNA was 

increased in endometrial adenocarcinoma compared to 

normal endometrium. 

Breakpoints 

None. 

To be noted 

Note 

In the absence of known endogenous ligand, 

considerable effort has been made toward identifying 

small molecules to modulate ERRa activity. Several 

ERRa antagonists have been developed and recently a 

novel antagonist was described that inhibited the 

growth of breast cancer xenografts (Chisamore et al., 

2009). 
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Identity 
Other names: DEBT91; DKFZP434L1021; FIGC; 

PCMF; ZZZ1 

HGNC (Hugo): KCMF1 

Location: 2p11.2 

DNA/RNA 

Description 

DNA size 87.29 kb, mRNA size 7555 bp, 7 exons. 

 

Protein 

Description 

381 amino acids; 41.945 kDa protein. 

KCMF1 protein contains ring finger (Zinc finger, ZZ-

type) 3-50 (48), zinc finger (C2H2-type) 78-101 (23), 

nuclear localization signal (NLS) 152-168 (17), and a 

coiled coil domain 225-257 (33). 

Isoforms: Two isoforms that predicted to encode 

proteins containing the zinc finger domain have been 

identified; other isoforms are relatively shorter and not 

well defined. 

 

 




































































































