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Identity 
Other names: CD182; CD183; CKR-L2; CMKAR3; 
CXC-R3; CXCR-3; GPR9; IP10; IP10-R; Mig-R; 
MigR 
HGNC (Hugo): CXCR3 
Location: Xq13.1 
Note: CXCR3 is a G protein-coupled receptor with 
selectivity for three chemokines, termed IP10 
(CXCL10), Mig (CXCL9) and I-TAC (CXCL11). 
IP10, Mig and I-TAC belong to the structural 
subfamily of CXC chemokines, in which a single 
amino acid residue separates the first two of four highly 
conserved Cys residues. Binding of chemo-kines to 
CXCR3 induces cellular responses that are involved in 
leukocyte traffic, most notably integrin activation, 
cytoskeletal changes and chemotactic migration. A 
hallmark of CXCR3 is its prominent expression in in 
vitro cultured effector/memory T cells, and in T cells 
present in many types of inflamed tissues. In addition, 
IP10, Mig and I-TAC are commonly produced by local 
cells in inflame-matory lesions, suggesting that CXCR3 
and its chemokines participate in the recruitment of 
infla-mematory cells. 
 

DNA/RNA 
Note 
CXCR3-A is a receptor for CXCL9, CXCL10 and 
CXCL11 and mediates the proliferation of human 
mesangial cells. CXCR3-B is a receptor for CXCL4 
and also mediates the inhibitory activities of CXCL9, 
CXCL10 and CXCL11 on the growth of human 
microvascular endothelial cells. CXCR3-B may play a 
role in angiogenesis. 

Description 
Alternative splicing of the CXCR3 gene generates two 
distinct chemokine receptors. The CXCR3 gene 
generates two distinct mRNAs, resulting from 
alternative splicing of three different exons. The 
already known CXCR3, renamed CXCR3-A,results 
from splicing of a single intron. The first exon encodes 
4 amino acids and the second exon encodes the 
remaining 312 amino acids. The recently identified 
splicing variant, CXCR3-B,results from an alternative 
splicing between the same donor site used by the 
known CXCR3-A and a novel acceptor site localized 
233 base pairs upstream of the CXCR3-A acceptor site. 
This novel exon (exon2) encodes 51 different amino 
acids, which are selectively expressed in CXCR3-B. 

 
The CXCR3 gene generates two distinct mRNAs. 
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Transcription 
CXCR3-A and CXCR3-B transcripts of 1.6 and 1.8 kb, 
respectively. 

Protein 
Description 
Size: 368 amino acids; 40660 Da. 

Expression 
CXCR3-A and CXCR3-B are mainly expressed in the 
heart, kidney, liver and skeletal muscle. CXCR3-A is 
also expressed in the placenta. 

Localisation 
Cell membrane; Multi-pass membrane protein. 

Function 
Dijkstra et al. showed that human CCL21, in the 
absence of its primary receptor, CCR7, is a functional 
ligand for CXCR3, inducing chemotaxis in adult 
microglial cells, but not in kidney epithelial cells. 
CCL21 signaling through CXCR3 depends on the 
cellular background in which CXCR3 is expressed. 
Lasagni et al. found that both CXCR3-A and CXCR3-
B bound CXCL9, CXCL10, and CXCL11, but only 
CXCR3-B bound CXCL4 (PF4), following expression 
in a microvascular endothelial cell line. Overexpression 
of CXCR3-A induced an increase in endothelial cell 
survival, whereas overexpression of CXCR3-B 
upregulated apoptotic pathways. CXCR3B-specific 
monoclonal antibodies reacted with neoplastic tissue 
endothelial cells, providing evidence that CXCR3-B is 
expressed in vivo and may account for the angiostatic 
effects of CXC chemokines. 

Implicated in 
Melanoma 
Prognosis 
Forty primary melanomas were analyzed. 57% of the 
tumors expressed CXCR3 and 35% expressed CXCR4 
on the melanoma cells. Co-expression of both CXCR3 
and CXCR4 conferred a significantly poorer outcome 
similar to the expression of CXCR4 alone. 
Oncogenesis 
Several human melanoma cell lines as well as 
melanoma cells on macroscopically infiltrated lymph 
nodes express the chemokine receptors CXCR3 and 
CXCR4. In a murine model with B16F10 melanoma 
cells, reduced CXCR3 expression by antisense RNA 
showed significantly reduced metastatic activities to 
lymph nodes. 
 
 
 
 

Breast cancer 
Oncogenesis 
Activation of Ras in MDA-MB-435 and MCF-7 breast 
cancer cells promotes CXCL10 expression and down-
regulates CXCR3-B expression to promote tumor cell 
proliferation. In a murine model of metastatic breast 
cancer, a small molecular weight antagonist of CXCR3 
inhibits lung metastasis. 

Colon cancer 
Prognosis 
In 92 colon cancer samples, 31 samples (33.7%) 
expressed CXCR3 on cancer epithelial cells. The 
patients with CXCR3-positive tumors had a 
significantly poorer prognosis than those with CXCR3-
negative tumors. In addition, the patients with tumors 
dobly positive for CXCR3 and CXCR4 had a 
significantly poorer prognosis than those with tumors 
positive only for CXCR4 or doubly negative. 
Oncogenesis 
In a murine model of metastatic colon cancer, 
overexpression of CXCR3 significantly promotes 
lymph node metastasis, although metastasis to the liver 
or lung was unaffected. 

Renal cell carcinoma 
Oncogenesis 
Real-time RT-PCR analysis showed that expression 
levels of I-TAC, Mig, and CXCR3 in RCC tissues were 
greater 14.9 times, 30.3 times, and 9.9 times, 
respectively, compared with the levels in the 
corresponding normal kidney tissues. 

B-cell Lymphoma 
Oncogenesis 
CXCR3 expression was seen in 37 of 39 cases of 
chronic lymphocytic leukemia / small lymphocytic 
lymphoma, whereas mantle cell lymphoma (30 cases), 
follicular lymphoma (27 cases) and small noncleaved 
cell lymphoma (8 cases) were negative in all but 2 
cases. 
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Identity 
Other names: FLJ11259 
Location: 12q23.2 
Local order: Cen-SYCP3-GNPTAB-DRAM-
LOC100129880-CCDC53-Tel. 

DNA/RNA 
Description 
The gene encompasses 46.3 Kb of DNA and contains 7 
exons. All exons are coding with exon 1 and exon 7 
containing additional noncoding sequences at their 5' 
and 3' ends, respectively. 

Transcription 
The major transcript is 3553 bp. An alternative, in-
frame spliced variant has been described that skips 
exon 4 and exon 5. Significance of this transcript is not 
known. DRAM mRNA is induced in a p53-dependent 
manner after cellular or genotoxic stress. Two 
alternative functional p53 consensus enhancer elements 
have been described. DRAM is also induced by p73. 
DRAM mRNA appears to be widely expressed in 
various tissues and cell types. DRAM mRNA is 
reported to be decreased in various tumor types 
compared to normal tissue. 

Pseudogene 
Chromosome 4 (LOC727709). 

Protein 
Description 
DRAM consists of 238 amino acids. It is predicted to 
have 6 transmembrane regions. DRAM is a lysosomal 
protein that is required for induction of autophagy by 
the p53 pathway. 

Expression 
No expression data for endogenous DRAM is available 
at the protein level. 

Localisation 
Overexpressed and tagged DRAM appears to localize 
to the lysosome. Localization of endo-genous DRAM 
has not been reported. 

Function 
The precise function of DRAM is unknown. The first 
paper reporting a biologic activity for DRAM was in 
2006. There is strong evidence from multiple sources 
that DRAM (FLJ11259) is a direct p53 target gene and 
is induced in response to DNA damage. This includes 
global p53-induced gene expression and global p53 
ChIP-PET studies. DRAM is a mediator of autophagy 
and is required for p53-induced apoptosis in response 
to DNA damage. However, DRAM has minimal effects 
alone on cell growth or apoptosis. DRAM mRNA is 
downregulated in some tumors compared to normal.  
Overall evidence suggests DRAM may be a tumor 
suppressor downstream of p53. However, whether the 
role of DRAM in autophagy is positive or negative and 
whether DRAM mediates cell death or survival in 
pathologic and physiologic settings may be complex 
and context dependent. 

Homology 
DRAM is highly conserved in higher metazoans 
including C. elegans, Drosophila, and Zebrafish. 
DRAM shares no homology with any proteins of 
known function. DRAM has no known functional 
domains. Human DRAM shares significant homology 
with other 6 transmembrane proteins of unknown 
function, including TMEM77, TMEM150 (TM6P1), 
and FLJ12993. TM6P1 was cloned by subtractive 
hybridization as induced in starved rat liver. Nutrient  
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starvation is a major physiologic inducer of autophagy. 

Mutations 
Note 
Have not been described. 

Implicated in 
Autophagy 
Note 
DRAM may be involved in diseases associated with 
deregulation of autophagy. DRAM may link p53 and 
cancer suppression/ treatment to autophagy. 
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Identity 
Other names: EEF1AL; EF-1-alpha-2; EF1A; HS1; 
STN; eEF1A-2 
HGNC (Hugo): EEF1A2 
Location: 20q13.3 

DNA/RNA 
Description 
8 exons and 7 introns. 

Transcription 
5 alternatives for transcript splicing. 

Protein 
Description 
50kDa; 463 amino acids contains tRNA binding sites, 
GTP binding and hydrolysis sites and putative actin 
binding sites (see figure below). 
 

Expression 
In mice and humans, eEF1A2 is expressed only in 
normal tissues of the brain, heart and skeletal muscle. 
Expression is found in tumours of the breast, lung and 
ovary. 

Localisation 
Diffusely cytoplasmic and nuclear. 

Function 
This protein is an isoform of the alpha subunit of the 
elongation factor-1 complex. There are two known 
isoforms of protein elongation factor eEF1A (eEF1A1 
and eEF1A2). eEF1A proteins are GTP-binding 
proteins that interact with amino-acylated tRNA and 
recruit them to the ribosome during the elongation 
phase of protein translation. In addition, eEF1A2 binds 
to and stimulates the lipid kinase activity of 
phosphatidylinositol 4-kinase beta, the enzyme that 
catalyzes the generation of phospha-tidylinositol 4-
phosphate from phosphatidylinositol.  
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eEF1A2 also activates the Akt serine/threonine kinase 
and can stimulate actin remodeling and increase the 
rate of cell invasion and migration in vitro. 

Homology 
EEF1A2 is highly homologous to the EEF1A1. 
EEF1A2 and EEF1A1 share greater than 90% DNA 
sequence and amino acid identity. The GTP binding 
and hydrolysis domains also have homology to the Ras 
GTPase. 

Mutations 
Note 
Inactivation of mouse EEF1A2 leads to immuno-
deficiency, neuromuscular abnormalities and death by 
30 days of age. 

Implicated in 
Tumorigenesis 
Disease 
Breast, lung and ovarian cancer. EEF1A2 overex-
pression is found in approximatively 60% of breast, 
30% of ovary and 40% of lung tumours. 
Prognosis 
High eEF1A2 protein expression is associated with 
good prognosis in both breast and ovarian cancer. High 
eEF1A2 protein expression predicts poor prognosis in 
lung cancer. 
Cytogenetics 
Fluorescence in situ hybridization (FISH), showed high 
copy numbers of EEF1A2 in 25% ovarian tumors. 
Oncogenesis 
The eEF1A2 gene is transforming and increases the in-
vitro growth rate of mouse and human cells grown in-

vitro and also enhances their tumori-genicity in mouse 
xenograft models. 
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Identity 
Other names: GENE-33; MIG-6; MIG6; RALT 
HGNC (Hugo): ERRFI1 
Location: 1p36.23 
Local order: Centromere - ERRFI1 - PAK7 - TNFRSF9 
- UTS2 - PER3 - Telomere. 

DNA/RNA 
Description 
The MIG-6 gene is composed of 4 exons, and its 
coding region spans from exon 2 to within exon 4. 

Transcription 
MIG-6 transcription can be rapidly up-regulated by 
many stress stimuli such as mechanical forces, injury 
and hypoxia, and by serum as well as various growth 
factors including EGF and HGF/SF. It is regulated 
during cell cycle progression, and peaks at the mid-G1 
phase. The transcription results in a 3.1-kb mRNA. 

Protein 
Description 
MIG-6 is a 58-kDa non-kinase scaffolding adaptor 
protein consisting of 462 amino-acids. Several 
conserved protein-protein interaction motifs/ domains 
are present in this protein: a CRIB domain is in the N-
terminus, and has been shown to interact with CDC42 
and I� B� ; multiple proline-rich motifs are present in 
the middle of the molecule, and can bind to SH3 
domain containing proteins like GRB2; and a 14-3-3 
protein binding motif and two PEST sequences are also 
present. A large portion of its C-terminus (AH domain) 
shares a high homology with ACK1 kinase, and an 
EGFR-binding domain is mapped within this region. 

Expression 
MIG-6 is highly expressed in the liver and kidney. 
Moderate to low expression is observed in the brain, 
lung, placenta, heart, thymus, and some other tissues. 

 
MIG-6 genomic and protein structures. Exons: E1 to E4; coding regions: blue boxes; non-coding regions: orange boxes; CRIB: 
Cdc42/Rac-interaction and binding domain; AH region: ACK1 homology region; EBR: EGFR-binding region; 14-3-3 BD: 14-3-3 binding 
motif; SH3 BD: Src homology-3 domain binding motifs; two PEST sequences are indicated in red boxes. 
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Localisation 
It is mainly localized in the cytoplasm. 

Function 
MIG-6 is a negative feedback regulator of EGFR and 
Met receptor tyrosine kinase signaling. MIG-6 inhibits 
EGFR-mediated cell transformation and cell cycle 
progression in NIH3T3 cells. It can physically interact 
with EGFR, causing inhibition of EGFR 
phosphorylation and downstream activation. This 
inhibition is likely due to a blockage of EGFR dimer 
formation by MIG-6, as a crystal structure reveals 
binding of MIG-6 to the EGFR kinase domain 
interface. MIG-6 inhibits Met-mediated cell migration, 
likely through blocking HGF/SF-induced CDC42 
activation (although it does not physically interact with 
Met). Expression of MIG-6 has also been shown to 
activate NF� B by sequestering I� B� . The involvement 
of other MIG-6-interacting molecules in regulating the 
signaling output remains to be determined. 
MIG-6 may function as a tumor suppressor gene, and is 
likely to play an important role in skin morphogenesis, 
tissue homeostasis and stress response. Disruption of 
Mig-6 results in hyper proliferation of the cells in the 
tissues like joint, gallbladder and skin. Mice with Mig-
6 deficiency are prone to the formation of lung, 
gallbladder, bile duct, and skin cancers, and they 
develop early onset degenerative joint disease in 
heavily used joints. Reduced expression of MIG-6 has 
been observed in several human cancers including 
breast, ovarian, and skin cancers. While rare, mutations 
in MIG-6 have also been identified in human lung 
cancer. 

Mutations 
Germinal 
A heterozygous germline mutation at MIG-6 codon 373 
(Ala �  Val) has been identified in a primary lung 
cancer patient with squamous cell carcinoma. 

Somatic 
Two somatic mutations have been identified in non-
small cell lung cancer cell lines: a nonsense mutation at 
codon 83 (Glu �  stop codon) in the NCI-H322 
adenocarcinoma cell line; and a missense mutation at 
codon 109 (Asp �  Asn) in the NCI-H226 squamous 
cell carcinoma cell line. 

Implicated in 
Various human cancers 
Note 
The MIG-6 gene is located at chromosome 1p36, a 
locus that is frequently associated with human cancers. 
Decreased expression of MIG-6 is reported in breast, 
ovarian, pancreatic, and skin cancers. Several  

mutations have been identified in lung cancer, and loss 
of heterozygosity seems to be associated with smoking, 
squamous cell carcinoma, and late-stage lung cancer 
patients. 
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Identity 
Other names: ESRB; ESR-BETA; ESTRB; ER-
BETA; Erb; NR3A2 
HGNC (Hugo): ESR2 
Location: 14q23.2 

DNA/RNA 
Description 
ER beta gene consists of 8 encoding exons. The open 
reading frame of the coding region is 1,593 bp. 

Protein 
Description 
The full-length human ER beta protein is 530 amino 
acids; 59.2 KDa, is also named ER beta1. Another 
isoform, ER beta2, is formed by alternative  
splicing of the mRNA. ER beta2 encodes a protein of 
495 amino acid residues, with a molecular weight of 

55.5 kDa. ER beta2 has a unique C-terminus, where the 
amino acids corresponding to exon 8 are replaced with 
26 unique amino acids. 

Expression 
ER beta is mainly expressed in tissues such as the 
ovary (granulosa cells), prostate (epithelium), testis, 
epididymis, colon, lung, bladder, bone marrow, 
salivary gland, vascular endothelium and regions of the 
brain, including hypothalamus and cortex. 

Localisation 
Nucleus. 

Function 
Cellular signaling of estrogen is mediated through two 
estrogen receptors (ERs), ER alpha and ER beta. The 
first ER, now known as ER alpha, was cloned in 1986. 
This receptor was regarded as the only ER that 
mediates estrogenic effects, until a  

 
Genomic organization of human ER beta gene, protein and functional domains.  
Gene: exons are indicated with boxes and introns with lines. The numbers above each box indicate the size of the exons (bp); the 
numbers below each line designate the size of the respective introns (bp). Dotted lines between gene and protein point to protein domain 
junctions.  
Protein: numbers indicate the total size of the protein in amino acids. The shaded bar shows the divergent C-terminal regions between 
the isoforms. 
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second ER, now known as ER beta, was cloned from 
rat prostate. ER alpha and ER beta belong to the 
superfamily of nuclear receptors and specifically to the 
family of steroid receptors that act as ligand-regulated 
transcription factors. ER alpha and ER beta have a high 
sequence homology and share affinity for the same 
ligands and DNA response elements. 
Binding of ligand activates ERs, by a mechanism that 
involves dissociation of heat shock proteins and 
dimerization of receptor proteins. Estrogen-modulated 
gene transcription is exerted via different mechanisms: 
the genomic and the nongenomic pathways. The 
canonical model for ER-mediated regulation of gene 
expression involves the direct binding of dimeric ER to 
DNA sequences known as estrogen response elements 
(EREs), followed by recruitment of a variety of 
coregulators to alter chromatin structure and facilitate 
recruitment of the RNA polymerase II (Pol II) 
transcriptional machinery. 
The transcriptional activity of ERs can be modulated by 
different types of post-translational modifications such 
as phosphorylation, acetylation, sumoylation, 
ubiquitination and methylation. ER alpha and ER beta 
exhibit different affinities for some natural compounds, 
and distinct expression patterns in a variety of tissues. 
Transcriptional activation by ER alpha is mediated by 
two distinct activation functions: the constitutively 
active AF-1 and the ligand-dependent AF-2. ER beta 
seems to have a weaker corresponding AF-1 function 
and thus depends more on the AF-2 for its 
transcriptional activation function. ER alpha and ER 
beta have different activities in certain ligand, cell-type, 
and promoter contexts. 

Homology 
Chimpanzee (Pan troglodytes), dog (Canis lupus 
familiaris), cow (Bos taurus), mouse (Mus musculus), 
rat (Rattus norvegicus) chicken (Gallus gallus), 
zebrafish (Danio rerio). 

Implicated in 
Various cancers 
Note 
Targeted disruption of ER beta in mice has suggested 
roles for ER beta in many tissues and organs, including 
the ovary, uterus, mammary gland, brain, immune 
system and ventral prostate. 

Prostate cancer 
Disease 
Estrogens can have profound effects on prostate growth 
and differentiation as well as in the pathogenesis of 
prostate cancer. In the adult rodent ventral prostate, ER 
beta is expressed in the epithelial cells, whereas ER 
alpha is expressed in the stroma. The estrogenic effects 
in the prostate may therefore be exerted by both ERs 
but in different cells. ER beta knockout mice display 
signs of prostatic hyperplasia with aging. 

Breast cancer 
Disease 
Estrogen is essential for growth and development of the 
mammary glands, and has been associated with 
promotion and growth of breast cancer. ER beta is 
found in both ductal and lobular epithelial and stromal 
cells of the rodent, whereas ER alpha is only found in 
the ductal and lobular epithelial cells and not in stroma. 
Recent studies have indicated a protective role of ER 
beta against breast cancer development. In vitro studies 
indicated that ER beta is an important modulator of 
proliferation and invasion of breast cancer cells. 

Colon cancer 
Disease 
ER beta is the predominant ER in the colonic 
epithelium, suggesting that effects of estrogen in the 
colon are mediated by ER beta. In colons from ER beta 
knockout mice, the number of proliferating cells was 
higher, and the migration of labelled cells from base to 
lumen of the crypts was faster when compared to wild-
type mice. Additionally, immunohistochemical staining 
revealed fewer apoptotic cells (cleaved caspase 3-
positive), a significant decrease in expression of the 
epithelial differentiation marker, cytokeratin CK20, the 
adherens junction protein, alpha -catenin, and the 
hemidesmosomal protein, plectin, in ER beta knockout 
mice. These findings suggest a role for ER beta in the 
organization and architectural maintenance of the 
colon. 

Ovarian cancer 
Disease 
A loss of ER beta expression or a decrease in ER 
beta/ER alpha ratio in epithelial ovarian cancer cells as 
compared with normal tissues has been reported by 
several groups. ER beta overexpression in ovarian 
cancer cells has been reported to exert antitumoral 
effects. 
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Identity 
Other names: MIC-1 (macrophage inhibitory 
cytokine-1); NAG-1; NRG-1; PDF (prostate derived 
factor); PLAB; PTGF- � ; PTGFB 
HGNC (Hugo): GDF15 
Location: 19p13.11 

DNA/RNA 
Note 
In the genome, the GDF15 gene is localized on 
chromosome 19 in the region p13.1-13.2. The 
macrophage inhibitory cytokine (MIC-1) DNA 
sequence is 2,746 bp long and consists of two exons 
separated by an intron. A conserved TATA-like motif 
(TATAAA) is present nearer to the start codon. 

Transcription 
The expression of GDF15/MIC-1 is upregulated by 
IL1� , TNFa, IL2, MCSF, TGF�  and p53. Androgen 
also regulates the expression of GDF15/MIC-1 in vitro 
and in vivo. In prostate cancer cells, calcitriol induces 
GDF15/MIC-1 expression. Furthermore, it has been 
shown that the basal transcription of MIC-1 gene is 
regulated by Sp1 and Sp3. 

Protein 
Description 
The premature GDF/PDF/MIC-1 protein consists of 
308 amino acids that contain a 29 amino acid signal 
peptide, a 167 amino acid propeptide, and a 112 amino 
acid mature protein. The mature protein is secreted as a 
homodimer linked by disulfide bonds and is released 
from the propeptide following intracellular cleavage at 
RXXR furine-like cleavage site. The mature peptide of 
GDF-1/MIC-1 contains two additional cysteine 
residues in addition to the seven conserved cysteines 
necessary for the cysteine knot, a structural hallmark of 
this TGF-�  superfamily. The exact function of these 
two additional cysteine residues is still unknown. The 
propeptide has a consensus N-linked glycosylation site 
in it. Unlike all other TGF-�  superfamily members, 
MIC-1 mature peptide can be correctly folded and 
secreted without a propeptide. The propeptide plays a 
novel role in proteosomal targeting of the monomeric 
precursor and ensures that only dimeric precursor exists 
in the endoplasmic reticulum. 
 
 
 

 
Shows the genomic organization of GDF15 gene. 
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Shows the structural organization and processing of GDF15 protein. RXXR-motif for cleavage; N, amino-terminal region; C, cysteine. 

 

Expression 
GDF15/PDF/MIC-1 is expressed at high levels in 
placenta, adult prostate, skin and at a low level in 
several other tissues including colon, kidney and fetal 
brain. 

Localisation 
MIC-1 is an extracelluarly localized secretory protein. 

Function 
GDF15/MIC-1 plays diverse biological functions in 
varied cellular context. It has been proposed that 
GDF15/MIC-1 can regulate the late phase macrophage 
activation by inhibiting TNF-a as an 
autocrine/paracrine regulatory molecule. Its role in the 
early stages of endochondrial bone formation, 
hematopoietic development, embryonic implanta-tion 
and placental function has been reported. Animal 
studies have shown the role of GDF15/ MIC-1 as a 
central regulator of appetite and body weight. For 
midbrain dopaminergic neurons, GDF15/MIC-1 acts as 
a both neurotrophic and neuroprotective factor, in vitro 
and in vivo. A role of GDF15/MIC-1 in cancer 
progression has also been reported by impacting on cell 
signaling. 

Homology 
It shares a significant homology with the GDF15 gene 
of Pan troglodytes, Bos Taurus and Canis lupus 
familiaris. In addition, it is also similar to Gdf15 gene 
of Mus musculus and Rattus norvegicus. 
 

Implicated in 
Various Cancers 
Disease 
GDF15/MIC-1 over expression is associated with 
different cancers, including gastric, pancreatic, prostate 
and colorectal cancer. It has been shown that 
measurement of serum GDF15/MIC-1 level aids in the 
diagnosis of prostrate and pancreatic cancer. 
Prognosis 
Recently, a direct association of elevated serum 
GDF15/MIC-1 and metastatic prostrate, colorectal, and 
breast cancer has been reported. Additionally, higher 
serum GDF15/MIC-1 level was correlated with higher 
incidence of lymph node metastasis and shorter relapse 
and shorter overall survival period. 
Oncogenesis 
The oncogenic property of GDF15/MIC-1 in different 
cancer has been reported. In prostrate cancer, it 
promotes AR-positive prostrate cancer cell 
proliferation trough the activation of ERK1/ ERK2 
signal pathway. Additionally, GDF15 promotes the 
drug resistance property of prostrate cancer cells. The 
role of GDF15/MIC-1 in promoting the invasive 
property of gastric cancer cells has been reported. This 
may be due to GDF15/MIC-1 mediated up-regulation 
of Uroki-nase-type plasminogen activator system. In 
contrast, some studies have reported an anti-
tumorigenic role of GDF15/MIC-1 in colon, breast and 
glioblastoma cell lines. Most of these reports suggest a 



GDF15 (growth differentiation factor 15) Senapati S, et al. 
 
 
 
 
 

Atlas Genet Cytogenet Oncol Haematol. 2009; 13(3)  206

role of GDF15/MIC-1 in the induction of apoptosis via 
both p53-dependent and independent mechanisms. 

Thalassemia 
Disease 
Expanded erythroid compartment secrete high level of 
GDF15, which leads to iron overload in thala-ssemia 
syndromes by inhibiting hepcidin expression. 
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Identity 
HGNC (Hugo): ID4 
Location: 6p22.3 
Location (base pair): Starts at 19,945,596 and ends 
at 19,948,894 bp from pter. 

DNA/RNA 
Description 
The gene spans 3,3 kb on plus strand. 

Transcription 
3 exons; mRNA 2,343 bp. 

Protein 
Description 
161 amino acids; 16.6 KDa; contains a poly-Ala (from 
amino acid 39 to 48), a helix-loop-helix motif (65 to 
105), and a poly-Pro (118 to 124). 

Expression 
Expressed in various tissues. 

Function 
ID4 is one of the members of the ID gene family: 
"Inhibitors of DNA binding". They are transcription 
factors which act as transcription inhibitory proteins. 
They are basic helix-loop-helix (bHLH) proteins which 
contain the bHLH dimerization domain, but lack the 
DNA binding domain. They are able to form 
heterodimers with other bHLH proteins, but inhibit the 
DNA binding, inactivating the process. Since bHLH  
 
 

proteins act as trans-cription factors, ID genes are  
transcription repress-sors, modulating various 
functions. ID proteins play critical roles in early 
embryonic processes, growth, differentiation, 
senescence and apoptosis; they are also involved in 
angiogenesis. ID4 is expressed in the central nervous 
system. ID4 is required for G1-S transition and enhance 
proliferation in early cortical progenitors. On the other 
hand, ID4 enhances RB1 -mediated inhibition of 
proliferation of differenciating neurons, either by direct 
inter-action or through interaction with other molecules 
of the cell cycle machinery. Other ID genes are not 
redondant with ID4 during telencephalic develop-ment, 
supporting the idea that ID4 function is unique in this 
context (Yun et al., 2004). In immature neurons with 
high expression of ID proteins, heterodimers of bHLH-
ID prevent DNA binding and expression of 
differentiation associated genes. 
ID4 may play an important suppressive role in tumor 
progression, and its silencing by hyper-rmethylation 
favours tumorogenesis (see below). 

Implicated in 
B-cell acute lymphoblastic leukaemia 
(B-ALL) with t(6;14)(p22;q32) --> ID4 - 
IGH 
Note 
ID4 was juxtaposed to the IGH enhancer, leading to 
ID4 overexpression. (Bellido et al., 2003; Russell et al., 
2008). 
Prognosis 
Prognosis in this disease looks fair. 
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Non Hodgkin lymphoma 
Note 
ID4 promoter was found hypermethylated in folli-cular 
lymphomas, diffuse large B-cell lymphomas, as well as 
lymphoid cell lines (Hagiwara et al., 2007). 

Brain tumours 
Note 
In oligodendroglial tumours and glioblastomas, ID4 is 
expressed in neoplastic astrocytes but not in neoplastic 
oligodendrocytes (Liang et al., 2005). 

Breast cancer 
Note 
Hypermethylation of ID4 promoter and ID4 mRNA 
suppression was found in breast cancer cell lines as 
well as in primary breast cancers. In one study, it was a 
significant risk factor for nodal metastasis (Umetani et 
al., 2006). In another study, BRCA1, ER (estrogen 
receptor), and ID4 were found expressed in breast 
cancer specimens from patients with invasive 
carcinomas. Most of the patients who expressed 
BRCA1 also expressed ER, but were negative for ID4, 
and vice versa. BRCA1-ER and ID4 are linked in a 
negative correlation (Roldan et al., 2006). Id4 regulates 
BRCA1 expression and may be involved in hormone-
dependent regulation of BRCA1 homeostasis (de 
Candia et al., 2004). ID4 is constitutively expressed in 
the normal human mammary epithelium but is 
suppressed in ER-. 
Positive breast carcinomas and preneoplastic lesions. 
ER-negative carcinomas are Id4 positive (de Candia et 
al., 2006). These results support a possible role of Id4 
as a tumor suppressor factor in the human breast and 
suggest that the expression of Id4 in the mammary 
ductal epithelium may be regulated by estrogen (de 
Candia et al., 2006). 

Bladder cancer 
Note 
ID4 is part of the 6p22.3 amplicon frequently observed 
in advanced stage bladder cancer. ID4, as well as E2F3 
and DEK, was overexpressed in bladder cancer cell 
lines. This overexpression was correlated with the copy 
number. However, ID4 expression was equivalent in 
fresh cancer tissues and normal urothelium (Wu et al., 
2005). 

Gastric cancer 
Note 
ID4 promoter is hypermethylated and showed a low 
level of expression in 30% of gastric adenocarci-nomas 
and in most gastric cancer cell lines, while it's 
expression was high in normal gastric mucosa. 
Furthermore, there was a significant association of ID4 
promoter hypermethylation/ID4 down regula-tion and 
that of hMLH1 and microsatellite instability (Chan et 
al., 2003). 

Colorectal cancer 
Note 
ID4 is silenced in colorectal cancer: Hyper-methylation 
was found in half of the primary colorectal cancer 
specimens tested (and in cell lines as well), in 3/4 of 
liver metastases of colorectal cancer specimens tested, 
but not in normal epitheliums nor in adenomas. 
Moreover, the methylation status was correlated with 
the histo-pathological grade, and hypermethylation of 
ID4 was identified as a significant independant risk 
factor of poor prognosis (Umetani et al., 2005). 

Rett syndrome 
Note 
A significantly increased protein expression of ID 
genes was found in human brain tissue of Rett 
syndrome patients, compared to controls (Peddada et 
al., 2006). Rett syndrome is a X-linked neuro-
developmental disorder resembling autism, and due to 
MECP2 (Xq28) mutations in most cases, more rarely 
due to mutations of CDKL5 (Xp22) or, much less 
convaincingly, NTNG1 (1p13). 
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Identity 
Other names: HsT18964 
HGNC (Hugo): ITGA11 
Location: 15q23 

DNA/RNA 
Description 
The gene contains 30 exons and 29 introns; it is 
composed of a 30 nt long 5' untranslated region, a 
3564-nucleotide open reading frame, a 329-nucleotide 
3' noncoding sequence and a polyA tail. 

Transcription 
Gene analysis in silico reveals several potential splice 
variants, which still remain to be validated at the RNA 
level. The basal promoter is regulated by Sp1/ Sp3/ Ets-
1 binding sites. How occupation of these cis-binding 
sites in the promoter results in a fibroblast-specific � 11 
expression pattern remains to be shown. One working 
hypothesis is that the combined binding of Sp1 with a 
specific member of the Ets family of transcription 
factors contributes to the tissue-specific expression 
pattern. 

Protein 
Description 
The mature � 11 peptide is 1166-amino acid-long 
(M.W. 145 kDa in SDS-PAGE under non-reducing 
conditions), which is longer than any other currently 
identified integrin � -chain (with the closest being � E, 
which is composed of 1160 amino acids). The 
extracellular domain contains seven FG-GAP repeats in  

the amino-terminal end with an inserted I domain 
between repeats 2 and 3. The I domain consists of 195 
amino acids and includes a conserved metal ion-
dependent adhesion site motif. In addition to the metal 
chelating site in the I domain, three potential divalent 
cation binding motifs with the consensus sequence 
DXD/ NXDXXXD are present in repeats 5-7. A total of 
20 cysteines are located in the extracellular domain. Of 
these, 16 are conserved in the most closely related 
integrin � 10- and � 1-chains, and they may contribute to 
intramolecular disulfide bonds. There is an inserted 22 
amino acid sequence in the calf-1 domain in the stalk 
region at amino acids 804-826, distinguishing � 11 from 
other integrin � -chains. The transmembrane region 
(amino acids 1142-1164) is 23 amino acids long and is 
followed by a cytoplasmic tail of 24 amino acids. The 
cytoplasmic tail contains the sequence GFFRS instead 
of the conserved GFFKR sequence found in all other 
alpha-chains except ITGA8 - alpha 10. 

Expression 
Analysis of � 11 protein and mRNA expression and 
distribution in human and mouse embryos revealed a 
restricted expression on mesenchymal non-muscle cells 
in areas of highly organized interstitial colla-gen 
networks. 

Localisation 
Membrane-bound. 

Function 
Integrin � 11 subunit binds integrin beta 1 subunit to 
form a heterodimer and function as a receptor for 
interstitial collagens (with highest affinity for collagen 
type I). It is involved in cell attachment, cell migration 
and collagen reorganization on mesenchymal non-
muscle cells. 
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Scematic structure of the I-domain containing � 11 integrin 
A. The integrin's �  subunit primary structure, including predicted divalent cation-binding sites (Mg2 as red star, and Ca2 as gray stars) is 
shown. The position of the inserted sequence of 22 amino acids in the Calf-1 domain is marked.  
B. Schematic representations of straightened (active) conformations of the integrin. The arrangement of domains is based on the 3-
dimensional crystal structure of the � v� 3-integrin, with an I domain added between the second and third � -propeller repeats.  
I-d indicates I domain; PSI, plexin/semaphorin/integrin; and TM, -tail domain of integrin �  subunit. 
 

Homology 
When compared with other I domain-containing 
collagen-binding integrin subunits, � 11 amino acid 
sequence shows the highest overall identity with 
integrin alpha 10 (42% identity) followed by integrin 
alpha 1 (37% identity), and integrin alpha 2 (35% 
identity). Of the non-I domain-containing integrins, 
integrin alpha 4 and integrin alpha 9 show the highest 
sequence similarity to � 11. ITGA11 shows 86% 
identity with mouse integrin � 11 at the nucleotide level, 
translating to 89% identity at the amino-acid level. 

Implicated in 
Lung cancer 
Disease 
Lung cancer, the most common cause of cancer-related 
death in men and the second most common in women, 
is responsible for 1.3 million deaths worldwide 
annually. For treatment purposes, lung cancer is 
grouped into 2 major types: small cell lung cancer 
(SCLC) and non-small cell lung cancer (NSCLC). The 
latter group is a heterogeneous disease which can be 
classified histologically into many types, with the 4 
major ones being adenocarcinomas, squamous cell 
carcinoma, large cell carcinoma and adenosquamous 
carcinoma. Adenocarcinoma accounts for about one 
third of lung cancers, with a majority arising in the 
peripheral lung tissue. In the Western world, most cases 
of adenocarcinoma are associated with smoking. 
However, among people who have never smoked, 
adenocarcinoma is the most common form of lung 
cancer. Elevated expression of ITGA11 was reported in 
non-small cells carcinomas and associated with stromal 
fibroblasts. The possible involvement of integrin � 11 in 
other types of tumor-stroma interactions remains to be 
defined. 
 

Prognosis 
The overall 5-year survival rate of lung cancer is 15%. 
In NSCLC, survival rate is primarily determined by the 
tumor stage, i.e. the extend of spread of tumor cells at 
the time of diagnosis. 
Oncogenesis 
Interactions of tumor cells with the stroma play a 
critical role in tumor growth, invasion, metastases, 
angiogenesis, and chemoresistance. Factors derived 
from the carcinoma-associated fibroblast (CAF) or 
activated fibroblast can contribute to the transformation 
of epithelial cells and enhance the tumorigenicity of 
cancer cells possibly through paracrine secretion of 
growth factors. It was recently shown that CAFs in 
NSCLC express higher levels of integrin � 11. One of 
the factors which is affected by higher levels of 
ITGA11 during tumor growth is IGF2. Higher levels of 
IGF2 in turn can stimulate growth of the tumor 
epithelial cells leading to tumor progression and 
metastasis. 
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Identity 
Other names: ARHGEF8; NAT1; NET1A; SLC6A2 
HGNC (Hugo): NET1 
Location: 10p15.1 
Local order: The NET1 gene is located on 
chromosome 10 in a 11832 bp sequence (5478574 to 
5490426). 

DNA/RNA 
Description 
This gene, found on chromosome 10 at location 10p15 
(5,444,518-5,490,401) encompasses 11832 bp of 
genomic DNA. The gene has 10 exons and the mRNA 
transcript is 3414 nucleotides in length. 

Protein 
Description 
The protein encoded by this gene acts as guanine 
nucleotide exchange factor (gef) for RhoA gtpase. This 
gene encodes for a protein of 596 amino acids with a 
molecular weight of 67.74 kDa. The protein contains 
the following domains: a Rho guanine nucleotide 
exchange factor (RhoGEF) activity domain from amino 
acid 178 - 355 and a pleckstrin homology domain from 
amino acid 387-503. The 596 amino acid sequence is: 
1 mepelaaqkq prprrrsrra sglstegatg psadtsgsel dgrcslrrgs 
sftfltpgpn 
61 wdftlkrkrr ekdddvvsls sldlkepsnk rvrplarvts lanlispvrn 
gavrrfgqti 
 
 
 
 
 

121 qsftlrgdhr spasaqkfss rstvptpakr rssalwseml ditmkesltt 
reirrqeaiy 
181 emsrgeqdli edlklarkay hdpmlklsim seeelthifg dldsyiplhe 
dlltrigeat 
241 kpdgtveqig hilvswlprl nayrgycsnq laakalldqk kqdprvqdfl 
qrclespfsr 
301 kldlwsfldi prsrlvkypl llkeilkhtp kehpdvqlle dailiiqgvl 
sdinlkkges 
361 ecqyyidkle yldekqrdpr ieaskvllch gelrsksghk lyiflfqdil 
vltrpvtrne 
421 rhsyqvyrqp ipvqelvled lqdgdvrmgg sfrgafsnse kaknifrirf 
hdpspaqsht 
481 lqandvfhkq qwfnciraai apfqsagspp elqglpelhe ecegnhpsar 
kltaqrrast 
541 vssvtqvevd enayrcgsgm qmaedskslk thqtqpgirr 
ardkalsggk rketlv. 

Expression 
This protein is widely expressed in mammalian tissue. 

Localisation 
It is localized to both the cytoplasm and the nucleus. 

Function 
Acts as guanine nucleotide exchange factor (GEF) for 
RhoA GTPase. 

Homology 
Holomogy with Pan troglodytes (97%); Canis lupus 
familiaris (92%); Mus musculus (93%), Rattus 
norvegicus (92%), Gallus gallus (88%). 

Mutations 
Note 
NET1 is subject to the following misense mutations: 
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Source ID: rs34821922 rs34658946 rs34821949 

Wild type 
nucleotide: 

A T A 

Wild type 
amino 
acid: 

K I K 

Variant 
nucleotide: 

G C G 

Variant 
amino 
acid: 

R T E 

Amino 
Acid 
Position: 

28 363 466 

Implicated in 
Gastric Cancer 
Disease 
Gastric or stomach cancer is a malignant epithelial 
malignancy of the stomach mucosa. The vast majority 
of gastric carcinomas are adenocarci nomas, arising 
from the gastric glandular epithelium. 
Prognosis 
Prognosis depends on the stage of the cancer. Because 
most stomach cancers are at an advanced stage upon 
diagnosis, the average 5 years survival rate is 12%. 
This is often due to the fact that the tumor has spread 
beyond the primary site. 
Oncogenesis 
NET1 has been shown to be up-regulated in Gastric 
Cancer (Leyden J et al., 2006). NET1 is a GEF 
exchange factor for Rho GTPase proteins (Alberts AS 
et al., 1998) and is therefore implicated in Rho-
mediated processes such as cytoskeletal organiza-tion 
and cell migration. NET1 has been shown to drive 
gastric tumor cell invasion (Leyden J et al., 2006). It is 
this aggressive phenotype of the disease that accounts 
for the dismal prognosis as the majority of gastric 
tumors are at an advanced stage upon diagnosis where 
they have spread beyond the primary site. 
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Identity 
Other names: BRG1; BRG-1; BAF190; FLJ39786; 
hSNF2b; NM_003072; SNF2-beta; SNF2B; 
SNF2L4; SNF2LB; SWI2 
HGNC (Hugo): SMARCA4 
Location: 19p13.2 
Local order: telomere-DNM2-IL1RL1LG-
MGC3262-SMARCA4-LDLR-AK075287-
centromere. 

DNA/RNA 
 

Relative size of the 33 coding exons of SMARCA4. The entire 
exon 1 is UTR (untranslated region). Exon numeration 
corresponds to the prevalent transcript (matching the EST 
EU430759). 

Description 
The SMARCA4 is also known as BRG1 (hSWI/SNF 
brahma-related gene). It spans a total genomic size of 
101347 bp and it is composed of 33 coding exons of 
varying lengths and 1 non-coding exon (exon 1). 

Transcription 
The human SMARCA4 transcript has approxi-mately 
5500 bp and contains an open reading frame of 4845 
bp, predicting a protein of 1614 amino acid residues. 
There are different transcripts arising from two  

alternative splicing sites within intron 28 and exon 30, 
which predict the translation of four different BRG1 
protein isoforms. In addition, between exon 26 and 27 
and exon 29 and 30 there are two additional exons that 
may constitute tissue specific transcripts. 

Protein 
Description 
SMARCA4 has a molecular mass of 181349 Da. 
SMARCA4 is the catalytic subunit of the chromatin-
remodelling complex SWI-SNF and influences 
transcriptional regulation by disrupting histone-DNA 
contacts in an ATP-dependent manner. In addition to 
an ATPase, the SWI/SNF complex is composed of a 
variety of accessory proteins, termed BAFs (BRG-1-
associated factors). 

Expression 
Widely expressed. 

Localisation 
SMARCA4 localizes in the nucleus. 

Function 
The SMARCA4 harbours the ATPase activity required 
for the chromatin remodelling activity of the SWI/SNF 
complex. This complex uses the energy of ATP 
hydrolysis to modify the interactions among histones 
leading to modifica-tions of the chromatin structure and 
to the regulation of gene expression.  
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SMARCA4 conserved domains. Proline rich region, containing more than 25% of proline residues in the aminoacid sequence. HSA and 
BRK domains, containing motifs that may predict binding to DNA. ATPase/helicase domain, contains motifs present in the DEAD 
helicases superfamily, a diverse family of proteins involved in ATP-dependent RNA or DNA unwinding. Bromodomain, 110 aminoacid 
domain, found in many chromatin associated proteins. Bromodomains can interact specifically with acetylated lysine. 
 
The SWI/SNF complex plays a role in differentiation, 
develop-ment and cell cycle control. SMARCA4 binds 
to or it is related to important tumor suppressor 
proteins, including BRCA2, LKB1, RB and FANCA. 
Moreover, the SWI/SNF complex has been shown to 
modulate the transcriptional activity of steroid 
receptors (e.g. glucocorticoids receptors, retinoic acid 
receptors, androgen and estrogen receptors), CMYC 
and RB. SMARCA4 acts as a tumor suppressor 
because: 
i) it induces cell-growth arrest after ectopic expression 
in deficient tumor cells, 
ii) SMARCA4-heterozygous mice have an increased 
predisposition to tumor development and, 
iii) it is biallelically inactivated by homozygous 
deletions or combinations of deletions and mutations in 
several types of tumors, specially in lung cancer. 

Homology 
The mammalian SWI/SNF complex contains either 
SMARCA4 or SMARCA2 as its central ATPase 
subunit. Both ATPases share 80% homology in their 
aminoacid sequence. However, differences in 
expression patterns and in the phenotypes of Brm and 
Brg1 knockout mice suggest specific biological roles 
between both ATPases.  
SMARCA2 and SMARCA4 are orthologous to the 
snf2/swi2 gene from S. cerevisiae and to the "brahma" 
(brm) gene from Drosophila. These encode proteins 
that are highly conserved along evolution, especially in 
the ATPase/helicase domain. Actually, SMARCA2 is 
56% identical and 72% homologous to the Drosophila 
brm. 

Implicated in 
Various cancers 
Note 
SMARCA4 somatic mutations have been identified in 
some cancer cell lines including those from the lung, 
prostate, breast, pancreas and colon. While somatic 
mutations have been detected in a small subset of lung 
primary tumors, about one third of the lung cancer cell 
lines of the non-small cell lung cancer type harbour 
inactivating SMARCA4 somatic mutations. All 
mutations are homozygous and most of them predict 
truncated proteins. The type of mutations commonly 
observed include nonsense, indels and large deletions. 

Although less frequently, missense mutations have also 
been reported. Four of the aminoacid substitutions  
found in human lung and colorectal cancer, the 
p.W764R, p.G1160R, p.L1163P and p.S1176C 
represent changes in highly conserved residues within 
the ATPase/helicase domain. In vitro generated muta-
tions of some highly conserved aminoacid within this 
motif lead to a seriously diminished catalytic activity of 
SMARCA4. SMARCA4 germ-line mu-tations have not 
been reported so far. 
Prognosis 
The lost of either SMARCA4 or SMARCA2, detected 
by immunostaining, predicts decreased survival in 
some cancer patients. 

To be noted 
Note 
SMARCA4 is somatically mutated in a significant 
proportion of tumors, in particular lung cancer. Thus, 
SMARCA4 is a bona fide tumor suppressor gene and is 
clearly implicated in cancer develop-ment. 
SMARCB1, encoding another subunit of the SWI/SNF 
complex, is subject to bi-allelic muta-tions (germinal 
and somatic) in rhabdoid tumours, a very aggressive 
form of paediatric cancers. 
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Identity 
Other names: CT5.2; HD21; HOM-MEL-40; 
MGC119055; MGC15364; MGC3884; RP11-552J9.2; 
SSX; SSX2A; SSX2B 
HGNC (Hugo): SSX2 
Location: Xp11.22 

DNA/RNA 
Description 
The SSX2 gene locus encompasses 9 exons and 10,304 
bp (Xp11; 52,752,974-52,742,671). 

Transcription 
The SSX2 gene is transcribed on the minus strand. 7 
SSX2 mRNA splice variants (SV1-SV7) have been 

detected in liver, testis, skin melanoma, endometrium, 
choriocarcinoma, placenta, spleen of Hodgkins 
lymphoma. 

Protein 
Description 
So far, two SSX2 protein isoforms (a and b) are known 
to exist. Their mRNAs correspond to SV1 (1466 bases) 
and SV3 (1322 bases) splice variants, respectively. The 
start codon for both isoforms is located in Exon 2. 
SSX2 isoform a is 233 amino acids (26.5 kD) and 
SSX2 isoform b 188 amino acids (21.6 kD). Of both 
isoforms, SSX2 isoform b is the most commonly seen 
and so far the best studied. 
 

 
SSX2 Locus and mRNA Splice Variants. Note: Exons are drawn to scale. 
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SSX2 protein isoforms. mRNAs and protein composition of SSX2 isoforms a and b. open boxes are non-coding exons. 

 

Expression 
SSX2 is a developmental nuclear protein normally 
expressed at high levels in testis (spermatogonia) and 
less abundantly in the thyroid gland. Its structural 
analysis revealed two functional domains; a 75 amino 
acids N-terminal region homologous to a Kruppel-
associated box (KRAB) and a C-terminal 35 amino 
acids domain with a potent transcription repressor 
activity (SSXRD). KRAB boxes are usually present in 
zinc finger proteins and are implicated in transcription 
repression. SSX2 lacks DNA binding motifs and is 
thought to function in gene regulation through 
interaction with other transcription regulators. It 
contains a high density of charged amino acids (about 
40%) and several consensus motifs for tyrosine 
phosphorylation and N-glycosylation. 

Function 
SSX2 is thought to function in development and germ 
line cells as a repressive gene regulator. Its control of 
gene expression is believed to be epigenetic in nature 
and to involve chromatin modification and remodeling. 
It is most likely mediated by the association of SSX2 
with the Polycomb gene silencing complex at the 
SSXRD domain. Polycomb silencing involves 
chromatin compaction, DNA methylation, repressive 
histone modifications and inaccessibility of promoter 
regions to transcription machineries. Other SSX2-
interacting partners include the LIM homeobox protein 
LHX4, a Ras-like GTPase Interactor, RAB3IP thought 
to be involved in vesicular transport, and SSX2IP, a 
putative cell cycle/ circadian rhythm regulator. Further 
studies will illuminate the mechanism by which these 
associa-tions contribute to SSX2 nuclear function. 

Homology 
Human SSX2 is a member of a nine-gene family 
(SSX1, SSX2, SSX3, SSX4, SSX5, SSX6, SSX7, 
SSX8 and SSX9) located on the X chromosome. The 
SSX proteins are highly homologous at the nucleotide 
(about 90%) and the protein level (80%-90%). They are 
encoded by six exons and their expression is normally 
confined to testis. Recently, a mouse SSX gene family 

with 13 members and conserved KRAB and SSXRD 
domains has been identified. 

Implicated in 
Synovial sarcoma 
Note 
Synovial sarcoma (SS) is an aggressive soft tissue 
tumor that inflicts young adults between 15 and 40 
years of age. Though its cell of origin is still unknown, 
it is thought to be a mesenchymal stem cell. Synovial 
sarcomas most frequently arise in the para-articular 
areas, but are also known to appear in other tissues 
such as the lung, heart, kidney, stomach, intestine, the 
abdomen, and the nervous system. 
Synovial sarcoma is characterized by a unique chro-
mosomal translocation event, t(X;18)(p11.2;q11.2) that 
involves a break in the SYT gene on chromosome 18 
and another in a SSX gene on the X chromosome. 
When fusion occurs at the break-points, it generates a 
hybrid gene, SYT-SSX, which encodes a potent 
oncogene. SYT-SSX is thought to initiate 
tumorigenesis and contribute to the develop-ment of 
synovial sarcoma. The t(X;18) tanslocation is the 
hallmark of synovial sarcomas. SYT-SSX is present in 
over 95% of SS cases. Its presence in human tumors is 
therefore of considerable diag-nostic value and is 
usually detected using FISH, RT-PCR, qPCR or real 
time PCR. Of the nine members of the SSX family, the 
SSX1 and SSX2 gene loci are the most frequent sites of 
breakage in SS, and occasionally SSX4. The break in 
SSX occurs at the beginning of exon 6. According to 
cDNA sequence data, the SSX2 component contained 
in the SYT-SSX2 oncogene consists of exons 6 and 8. 
They represent the last 78 amino acids of SSX2 
isoform b. This region lacks the KRAB repressive 
domain but retains the SSXRD region. 
SS presents in two distinct morphologies, monophasic, 
populated by spindle tumor cells, and biphasic with an 
additional glandular epithelial component. Several 
studies have demonstrated a strong correlation between 
the translocation subtype, tumor morphology and the 
clinical course of the disease. While the majority of 
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SYT-SSX2-containing tumors were found to be 
monophasic, SYT-SSX1 was mostly detected in the 
biphasic tumors and was associated with a shorter 
meta-stasis-free period and a worse prognosis. 
However, the notion of the SYT-SSX subtype as a 
prognostic parameter influencing disease progression is 
still controversial due to contradictory data from later 
studies. 
The molecular function of SYT-SSX is key to cancer 
development. The fusion of SSX to SYT results in the 
disruption of SYT and its associated chromatin-
remodeling/coactivator complexes (SWI/ SNF, p300) 
normal function in gene expression. This deregulation 
is caused by SSX aberrant epigenetic control that likely 
leads to untimely activation of oncogenic pathways 
such as IGF2, Wnt and ephrin, and reactivation of the 
anti-apoptotic oncogene, bcl-2. 
Hybrid/Mutated gene 
SYT-SSX2 
Note: SYT-SSX2 variants are rare. One was described 
by Fligman et al. It contains an additional 126 bp 
segment proximal to Exon 6, where the break occurred 
in Exon 5 while maintaining the frame. 

Cancer / testis antigen reactivated in 
several cancers. 
Note 
SSX2 is the prototype of CT antigens (MAGE, GAGE, 
NY-Eso-1), a group of proteins normally expressed in 
testis, whose genes are located on the X chromosome 
and are, for reasons unknown, aberrantly reactivated in 
several cancers. NAME: CT antigen-SSX2, HOM-
MEL40, CT5.2 
THERAPY/TARGET/VACCINE: CT antigens are 
immunogenic and are expressed exclusively in tumor 
tissues. They are therefore considered optimal targets 
for tumor immunotherapy and vaccine development. 
Attempts at generating CD4+ and CD8+ T cells 
reactive to SSX2-specific peptides are underway. 
Disease 
SSX2 is expressed as a CT antigen in several Cancers: 
Skin melanoma, Breast cancer, Endometrial Cancer, 
Lung Cancer, Bladder Cancer, Head-Neck cancer, 
Synovial sarcoma, Multiple myeloma, colorectal 
carcinoma, Hepatocellular carcinoma, Prostate Cancer, 
Glioma, Stomach Cancer, Thyroid Cancer, Lymphoma, 
and Leukemia. 
Prognosis 
Expression of SSX2 and other CT antigens is 
associated with advanced metastatic cancer. 
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Identity 
Other names: CD71; OKT-9; TFR1 (Transferrin 
receptor 1); TFR; TRFR; p90; Mtvr-1 (mammary 
tumor virus receptor 1, in mice) 
HGNC (Hugo): TFRC 
Location: 3q29 

DNA/RNA 
Note 
History and Nomenclature: The TFRC gene was 
assigned to chromosome 3 in 1982. It was located in 
3q22 - qter the following year. It precisely maps to 
3q29. Transferrin receptor was first detected as the 
proliferation-associated receptor for transferrin on 
leukemia cells. Transferrin receptor 2 is a distinct 
protein belonging to transferrin receptor-like family 
and its gene TFR maps to chromosome 7q22. 

Transcription 
13 alternative splicing variants have been described. 
The full-length transcript contains 19 exons enco-ding 
760 amino acids. 

Pseudogene 
There is no known pseudogene derived from TFRC. 

Protein 
Description 
A plasma membrane transport glycoprotein composed 
of disulfide-linked polypeptide chains, each 84.8-kDa 
molecular weight. Belongs to the peptidase m28 
family. 

Expression 
Expressed in a wide range of cell types and tissues. 
Expression level is highest in lymphocytes, placenta 
and neoplastic cells. 

Localisation 
TFRC is a cell surface membrane protein. 

Function 
TFRC is primarily involved in iron homeostasis by 
regulating cellular iron uptake in interaction with the 
HFE protein. It is also crucial in iron transportation 
from mother to fetus. 
Transferrin receptor is the main receptor for transferrin 
and allows transferrin-bound iron uptake by the cell. Its 
expression is regulated by cellular iron requirements. 
Conserved iron-response elements in the 3'-
untranslated region of transferrin receptor mRNA 
enhances binding of iron regulato-ry proteins 1 and 2. 
The hereditary hemochroma-tosis protein HFE 
competes for binding with transferrin for an 
overlapping binding site. It is also involved in materno-
fetal iron transport via the placenta. 

Mutations 
Note 
There are no disease-causing mutations in the TFRC 
gene. However, there are missense coding region 
variants that may have functional effects. The only one 
with appreciable frequency (rs3817672) is in exon 4 
and encodes S142G amino acid substitution. This 
polymorphism does not have a homogeneous global 
distribution. Its minor allele in Caucasians is the major 
allele in Asians and Africans.  
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There is no nonsense mutation described in TFRC. 
TFRC is not involved in any known translocations. 
Tfrc knockout mice are not viable and die during 
embryonic development due to erythropoietic and 
neuronal development problems. The short arm of 
chromosome 3 also harbors other iron-related genes: 
transferrin (3q22.1), lactotrans-ferrin (3q21-q23), 
melanotransferrin (3q28-q29) and ceruloplasmin (3q23-
q25). Trisomy of chromo-some 3, gain of the whole 3q 
arm and gain of 3q27-qter have been noted in various 
malignancies including both solid tumors and 
hematopoietic ones. 

Implicated in 
Cancer Susceptibility 
Note 
Overexpression of TFRC in malignant cells mediates 
higher iron uptake required for cell division. 
Expression is activated by c-Myc. No mutation or 
variation in TFRC causes cancer and TFRC is not 
involved in cancer-associated translocations. 
TFRC variant S142G modifies the associations of HFE 
C282Y mutation in cancer susceptibility for 
hepatocellular carcinoma, breast cancer, leukemia, 
colorectal cancer and multiple myeloma. Biological 
plausibility of these associations has been supported by 
the successful use of monoclonal antibodies against 
transferrin receptor in cancer treatment in vitro and in 
vivo. 
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Identity 
Other names: BGCAN; Betaglycan; TbetaRIII; 
TGFR-3 
HGNC (Hugo): TGFBR3 
Location: 1p22.1 

DNA/RNA 
Description 
The TGFBbetaR3 gene encodes 16 exons. 

Transcription 
The human TGFBR3 gene has two promoters, a 
proximal promoter and a distal promoter and produces 
a 4.2 kb mRNA. TGF-beta1 has been demonstrated to 
down regulate TbetaRIII expression through direct 
inhibition of the proximal TbetaRIII promoter. 

Protein 
Description 
TbetaRIII is an 853 amino acid transmembrane 
proteoglycan, which contains a short 41 amino acid 
cytoplasmic domain. TbetaRIII is a proteoglycan which 
contains glycosaminoglycan (GAG) side chain 
modifications (S535 and S546) composed of heparin 
and chondroitin sulfate. The TbetaRIII core has 
predicted molecular weight of 100 kDa, however fully 
processed TbetaRIII migrates at an apparent molecular 
weight of 180 to 300 kDa due to these 
glycosaminoglycan post-translational modifications. 
TbetaRIII contains a class I PDZ binding motif and a 
beta-arrestin2 interacting motif in the cytoplasmic 
domain, as well as a ZP-1 (zona pellucida) domain in 

the extracellular domain. The cytoplasmic domain of 
TbetaRIII is phosphorylated by TbetaRII. TbetaRIII 
also undergoes ectodomain shedding to produce soluble 
TbetaRIII (sTbeta-RIII). 

Expression 
TbetaRIII is ubiquitously expressed on nearly all cell 
types. Some cell types, including endothelial and 
hematopoietic cells, appear to have low to no TbetaRIII 
expression. The level of TbetaRIII expression is cell 
type specific. 

Localisation 
TbetaRIII exists as a transmembrane protein in the cell 
membrane and as a secreted protein, known as soluble 
TbetaRIII (sTbetaRIII), which can be detected in the 
extracellular matrix and serum. 

Function 
TbetaRIII is a member of the TGF-beta superfamily 
signaling pathways, which have essential roles in 
mediating cell proliferation, apoptosis, differentia-tion, 
and migration in most human tissues. TbetaRIII is the 
most abundantly expressed TGF-beta superfamily 
receptor and functions as a TGF-beta superfamily co-
receptor, by binding the TGF-beta superfamily 
members, TGF-beta1, TGF-beta2, or TGF-beta3, 
inhibin, BMP-2, BMP-4, BMP-7, and GDF-5 and 
presents these ligand to their respective signaling 
receptors to activate or repress (in the case of inhibin) 
TGF-beta1, BMP, or activin signaling to the Smad 
transcription factors. For example, in the case of TGF-
beta1, 2, or 3, Tbeta-RIII presents ligand to the TGF-
beta type II receptor (TbetaRII). Once bound to ligand, 
TbetaRII then recruits and transphosphorylates the 
TGF-beta type I receptor (TbetaRI), activating its 
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kinase function and leading to the phosphorylation of 
Smad2/3. Phosphorylation of Smad2 and Smad3 leads 
to formation of a complex with Smad4, and 
accumulation of this complex in the nucleus, where 
along with co-activators and co-repressors they regulate 
the transcription of genes involved in proliferation, 
angiogenesis, apoptosis, and differen-tiation. In 
addition to regulating receptor mediated Smad 
signaling, TbetaRIII also mediates ligand dependent 
and independent p38 pathway signaling. TbetaRIII can 
also undergo ectodomain shedding to generate soluble 
TbetaRIII (sTbetaRIII), which binds and sequesters 
TGF-beta superfamily members to inhibit their 
signaling. Although sTbetaRIII expression has been 
demonstrated to correlate with the cell surface 
expression of TbetaRIII, little is known about the 
regulation of sTbetaRIII production. The regulation 
TbetaRIII expression is sufficient to alter TGF-beta 
signaling. The cytoplasmic domain of TbetaRIII 
interacts with GIPC, a PDZ-domain containing protein, 
which stabilizes TbetaRIII cell surface expression and 
increases TGF-beta signaling. The cytoplasmic domain 
of TbetaRIII is also phosphorylated by TbetaRII, which 
results in TbetaRIII binding to the scaffolding protein 
beta-arrestin2. The TbetaRIII/ beta-arrestin2 interaction 
results in the co-internalization of beta-
arrestin2/TbetaRIII/Tbeta RII and the down-regulation 
of TGF-beta signaling. During development TbetaRIII 
has an important role in the formation of the 
atrioventricular cushion in the heart. Consistent with an 
important role for TbetaRIII during development, 
TGFbetaR3 null mice are embryonic lethal due to heart 
and liver defects. TGFbetaR3 has been recently 
identified as a tumor suppressor in multiple types of 
human cancers, including breast, lung, ovarian, 
pancreatic and prostate cancer. The loss of TGFbetaR3 
in these cancer types correlates with disease 
progression, and results in increased motility and 
invasion in vitro and increased invasion and metastasis 
in vivo. 

Homology 
TbetaRIII shares several regions of homology with the 
superfamily co-receptor, endoglin, with 2 regions of 
homology in the extracellular domain, a large domain 
near the amino terminus with 21% homology, and a 
shorter domain near the sites of GAG modification with 
50% homology. In addition, their cytoplasmic domains 
share 70% homology. 

Mutations 
Somatic 
Mutations in TbetaRIII have not been found in human 
cancers, although inactivating mutations in other 
components of the TGF-beta signaling pathway are 
common. 
 

Implicated in 
Breast Cancer 
Disease 
Breast cancer is the second leading cause of cancer 
death in women, exceeded only by lung cancer in the 
United States. Types of breast cancer include ductal 
carcinoma in situ (DCIS), lobular carcinoma in situ 
(LCIS), and invasive or infiltrating ductal carcinoma 
(IDC). 
Prognosis 
The current five year survival rate for breast cancer is 
98% for localized cancer, 80% for regional cancer, and 
27% for metastatic disease with distant spread. 
Oncogenesis 
TbetaRIII loss occurs relatively early in mammary 
carcinogenesis, with loss beginning in the pre-invasive 
state of DCIS. The degree of TbetaRIII loss correlates 
with breast cancer progression and with a decrease in 
patient survival. TbetaRIII loss in breast cancer is due 
to LOH (loss of hetero-zygosity) at the TGFbetaR3 
gene locus and potential transcriptional down 
regulation of TbetaRIII by increased levels of TGF-
beta in the tumor microenvironment. Restoring 
TbetaRIII expression inhibits tumor invasion, 
angiogenesis, and metastasis in vivo. TbetaRIII 
functions, in part, through the production of sTbetaRIII 
by ectodo-main shedding, which antagonizes TGF-beta 
signaling, leading to a decrease in invasiveness and 
angiogenesis in vivo. In addition, TbetaRIII functions 
as a tumor suppressor in non-tumorigenic mammary 
epithelial cells through the inhibition of NFkappa-B 
mediation repression of E-cadherin. Loss of TbetaRIII 
in non-tumorigenic mammary epithelial cells leads to 
increased invasive capa-bilities due to up-regulated 
NFkappa-B activity and loss of E-cadherin expression. 

Non-small Cell Lung Cancer (NSCLC) 
Disease 
Lung cancer is the leading cause of death of both males 
and females in the United States. Non-small cell lung 
cancer accounts for 87% of all lung cancers. 
Prognosis 
The five year survival rate for all stages of lung cancer 
is 15%. The survival rate is 49% for localized disease; 
however few cases are identified at this stage. 
Oncogenesis 
TbetaRIII has been characterized as a tumor suppressor 
in non-small cell lung cancer. Expression of TbetaRIII 
is lost in the majority of non-small cell lung cancer 
(NSCLC) at both the mRNA expression level and the 
protein level. Loss of heterozygosity (LOH) occurs in 
38.5% of NSCLC human specimens and correlates with 
decreased TbetaRIII expression, suggesting that LOH 
is one mechanism of loss of TbetaRIII expression. Loss 
of TbetaRIII expression correlates with NSCLC  
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progression and increasing tumor grade, with a trend 
towards decreased survival. The loss of TbetaRIII 
results in a functional increase in cellular migration, 
invasion, and anchorage independent growth of lung 
cancer cells. TbetaRIII regulates cellular invasion and 
motility in lung cancer in part through the generation of 
sTbetaRIII, although the mechanism of these effects 
remains unclear. 

Prostate Cancer 
Disease 
Prostate cancer is the most commonly diagnosed 
malignancy in men and the third leading cause of 
cancer-related deaths among men in the United States. 
Prognosis 
The five year survival rate for all stages of prostate 
cancer is near 99%. The five year survival rate for local 
and regional disease approaches 100%. 
Oncogenesis 
TbetaRIII has been characterized as a tumor suppressor 
in prostate cancer. Expression of TbetaRIII is lost or 
decreased in the majority of human prostate cancers at 
both the mRNA and protein level, due to the loss of 
heterozygosity at the TbetaRIII locus and epigenetic 
regulation of the TbetaRIII promoter. Loss of TbetaRIII 
correlates with advancing tumor stage and an increased 
probability of prostate-specific antigen (PSA) 
recurrence. Restoring TbetaRIII expression in prostate 
cancer cells decreases cell motility and cell invasion in 
vitro and tumorigenicity in vivo. The loss of TbetaRIII 
is a common event in human prostate cancer cells and 
is important for tumor progression through effects on 
cell motility, invasiveness, and tumorigenicity. 

Ovarian Cancer 
Disease 
Ovarian cancer is the fifth leading cause of cancer 
death among women in the United States. The majority 
of ovarian cancers are ovarian epithelial carcinomas or 
malignant germ cell tumors. 
Prognosis 
The overall five year survival rate is 45% for ovarian 
cancer. The five year survival rate is 70% for patients 
with regional disease. However the lack of effective 
treatments for metastatic disease and the aggressive 
nature of this disease results in a 30% survival rate for 
those with metastatic disease. 
Oncogenesis 
TbetaRIII has been characterized as a tumor suppressor 
in ovarian cancer. TbetaRIII expression is decreased or 
lost in epithelial derived ovarian cancer at both the 
mRNA and protein level due to epigenetic silencing 
which is progressive with increasing tumor grade. 
TbetaRIII inhibits ovarian cancer cell invasiveness and 
migration. TbetaRIII specifically promotes the anti-
migratory action of inhibin and inhibin-mediated 
repression of matrix metalloproteinases, which play a 

role in the invasive and metastatic potential of tumor 
cells. 

Pancreatic Cancer 
Disease 
Pancreatic cancer is the fourth leading cause of cancer 
death in the Unites States, with incidence levels closely 
matching the death rate. The majority of pancreatic 
cancers are adenocarcinomas, while endocrine 
pancreatic cancer is rare. 
Prognosis 
Pancreatic cancer has a low survival rate, with the 
median survival rate being four to six months and a five 
year survival rate of less than 5%. The 5 year survival 
rate for local disease is 20%. This low survival rate is 
due to delayed diagnosis caused by a lack of symptoms 
until the cancer is locally invasive or metastatic, a lack 
of effective screening tests, and ineffective treatments. 
Oncogenesis 
TbetaRIII may function as a tumor suppressor in 
pancreatic cancer. The genomic locus for TGFBR3 is 
deleted in 49% of human pancreatic cancers. Loss of 
TbetaRIII expression at the message and protein level 
correlates with worsening tumor grade in human 
pancreatic cancer specimens. In a pancreatic model of 
epithelial to mesenchymal transition (EMT), TbetaRIII 
expression is lost at the mRNA and protein levels. The 
loss of TbetaRIII protein expression occurs before the 
loss of E-cadherin and cytoskeletal reorganization, both 
markers of early EMT, and correlates with increased 
invasion and motility, hallmarks of EMT. The ability of 
TbetaRIII to suppress invasion and motility is partially 
mediated by sTbetaRIII. 

Renal Cell Carcinoma (RCC) 
Disease 
RCC is the most common form of kidney cancer. There 
are several subtype of RCC including Clear Cell RCC, 
Papillary RCC, Chromophobe RCC, and Collecting 
Duct RCC. 
Prognosis 
The 5 year survival rate for all stages of renal cell 
carcinoma is 65.5%. There is a lack of effective 
treatments for metastatic RCC and the 5 year survival 
rate is 9.5% for metastatic disease. 
Oncogenesis 
Loss of TbetaRIII at both the mRNA and the protein 
level occurs in all RCC tumor stages. Loss of TbetaRIII 
RNA expression is an early event in RCC and leads to 
a partial loss of TGF-beta responsiveness and 
attenuation of TGF-beta signaling. The sequential loss 
of TbetaRII after TbetaRIII loss leads to complete 
TGF-beta resistance and a more aggressive, metastatic 
RCC phenotype. Restoring TbetaRIII expression in the 
presence of TbetaRII, leads to enhanced TGF-beta 
signaling, restoration of growth inhibition, and the loss 
of anchorage independent growth over that observed 
with TbetaRII alone. 
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Identity 
Other names: CSC-21K; TIMP-2 
HGNC (Hugo): TIMP2 
Location: 17q25.3 
Note: The various human TIMP genes are localized on 
different chromosomes. TIMP2 contains nested DDC8 
gene, whereas the other TIMPs genes are nested in 
synapsins genes. 

DNA/RNA 
Note 
Comparison of the cDNA sequences of human TIMP2 
with human TIMP1 shows little homology considering 
that seen at the amino acid level. This result implies 
that these genes diverged early in the evolution of this 
gene family. 

 
The translated parts of exons 1-5 are shown by black boxes. 
The introns are shown by lines. The 5' UTR and the 3' UTR 

regions are shown by white boxes. 

Description 
The TIMP2 gene contains five exons and spans 72,413 
bases (start 74,360,654bp to end 74,433,067 from 
17pter) oriented at the minus strand. The exons are 
separated by four introns of 54.8, 2.7, 9.1, and 1.7 kb. 

Transcription 
Two transcripts of 1.2 and 3.8 kb are reported. Their 
difference in size is the result of the use of different 
polyadenylation signals within the 3'-end  
 

of the gene. There is no evidence of alternatively 
spliced products. 

Pseudogene 
TIMP4, TIMP3, TIMP1. 

Protein 
Note 
The proteins encoded by this gene family are natural 
inhibitors of the matrix metalloproteinases, a group of 
peptidases involved in degradation of the extracellular 
matrix. In addition to this role, the encoded protein has 
a unique role among TIMP family members in its 
ability to directly suppress the proliferation of 
endothelial cells. As a result, the encoded protein may 
be critical to the maintenance of tissue homeostasis by 
suppressing the proliferation of quiescent tissues in 
response to angiogenic factors, and by inhibiting 
protease activity in tissues undergoing remodelling of 
the extracellular matrix. 

Description 
Propeptide: Size 220 amino acids; Molecular mass 24.4 
kDa. 
Mature protein: Size 194 amino acids; Molecular mass 
21 kDa. 
It belongs to the protease inhibitor I35 (TIMP) family. 
It contains 1 NTR domain. No N- glycosylation is 
observed. 

Expression 
Constitutive. 

Localisation 
Secreted protein, as well as cell surface bound. 
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Function 
A variety of distinct functions have been described so 
far:  
1. TIMP2 complexes with some of enzymes of 
metalloproteinases family and irreversibly inactiva-tes 
them. It is known to act on MMP-1, MMP-2, MMP-3, 
MMP-7, MMP-8, MMP-9, MMP-10, MMP-13, MMP-
14, MMP-15, MMP-16 and MMP-19, through its tight 
binding to the enzymes in a 1:1 stoichiometry with a Ki 
‹ 10-9 M. The complex between human proMMP-2 and 
TIMP-2 is well studied and its crystal structure reveals 
an interaction between the hemopexin domain of 
proMMP-2 and the C-terminal domain of TIMP2, 
leaving the catalytic site of MMP-2 and the inhibitory 
site of TIMP2 distant and spatially isolated. The 
activity of TIMP2 is dependent on the presence of 
disulfide bonds in its structure. 
2. TIMP2 is a positive regulator of MMP-14 (MT1-
MMP) by promoting the availability of the enzyme at 
the cell surface and supporting pericellular proteolysis 
(after forming the trimolecular complex of MMP-14, 
TIMP-2 and proMMP-2). Through this activity of 
TIMP2 the specific activation of proMMP-2, after the 
interaction of TIMP2 with MT1-MMP (possibly MT2-
MMP and MT3-MMP) in cell surface, is achieved.  
3. Inhibition of angiogenesis, after binding to alpha3 / 
beta1-integrin, resulting in a decreased association of 
the protein tyrosine phosphatase Shp-1 with beta1-
integrin subunits and increased association of Shp-1 
with tyrosine kinase growth factor receptors (both 
VEGFR-2 and EGFR-1). 
4. Inhibition of endothelial cell proliferation. This 
activity is localized to TIMP2 C-terminal domain, 
specifically to the C-terminal disulfide loop, referred to 
as loop 6. 
5. Antiapoptotic activity. 
6. TIMP2 has been found to block tumor cell invasion 
both in vitro and in vivo and may act as metastasis 
suppressor gene. 

Homology 
TIMP2 shares 40% aminoacid sequence homology with 
TIMP1 especially in the N-terminal domain. 

Implicated in 
Cancer 
Note 
TIMP2 possesses a complicated role in cancer through 
its ability to regulate MT1-MMP activity and to inhibit 
MMPs, especially MMP-2. Its function as inhibitor of 
angiogenesis; which is independent to the previous, 
suggests a negative role in cancer. In addition, allelic 
deletion at 17q23-25 is found in approximately one-

third of breast cancer patients and it has been proposed 
that TIMP2 may act as metastasis suppressor gene. 
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Identity 

 
t(14;18)(q32;q21) with additional cytogenetic abnormalities in a 
hepatic MALT lymphoma. FISH demonstrated an IGH-MALT1 
rearrangement. 

Clinics and pathology 
Disease 
t(14;18)/IGH-MALT1 was detected in MALT 
lymphoma first. The frequencies at which the 
translocation occurs vary markedly with the primary 
site of the disease. IGH-MALT1 rearrange-ments were 
described also in other B-NHLs such as DLBCL 
(Diffuse Large B-Cell Lymphoma). 
 

Cytogenetics 
Cytogenetics morphological 
The t(14;18)/IGH-MALT1 is cytogenetically 
indistinguishable from the t(14;18)/IGH-BCL2. FISH 
with gene specific probes is suitable to distinguish 
between these two different rearrange-ments. 

Genes involved and proteins 
IGH 
Location 
14q32.33 

MALT1 
Location 
18q21 
Protein 
Stimulation of either the T cell antigen receptor (TCR) 
or B cell antigen receptor leads to stimulation of 
protein kinase C isoforms that phosphorylate the 
scaffolding protein CARMA1, which subsequently 
recruits both Bcl-10 and MALT1 to form what is now 
referred to as the CARMA1-Bcl-10-MALT1 (CBM) 
'signalosome'. Once the CBM signalosome is 
assembled, MALT1 functions as the 'effector' protein 
and mediates activation of the IKK complex, a multi 
subunit kinase that phosphorylates the Ikappa B 
proteins, which bind to and sequester the transcription 
factor  
NF-kappaB in the cytoplasm. Phosphorylation and 
subsequent degradation of Ikappa B leads to the release 
of NF-kappaB, which then translocates to the nucleus 
and regulates the transcription of 'target' genes involved 
in the immune response to foreign antigens. 
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Result of the chromosomal 
anomaly 
Hybrid gene 
Note 
Breakpoints upstream the coding exons of MALT1 
resulting in an in-frame deregulation of MALT1. 
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Clinics and pathology 
Disease 
Acute myeloid leukaemia; blast crisis (of myeloid type) 
of chronic myelogenous leukaemia. 

Epidemiology 
Four cases available: 4 male patients aged 44, 57, 67, 
and 72 (years). 

Cytogenetics 
Additional anomalies 
No additional anomaly in one case, monosomy 5 and 
major karyotypic anomalies in one case, 
t(9;22)(q34;q11) in the two remaining cases. 

Genes involved and proteins 
Note 
RUNX1 was found involved in the translocation in the 
two cases where it was studied; the partner is unknown. 

RUNX1 
Location 
21q22 
Protein 
RUNX1, also called AML1 or CBFA2, is a 
transcription factor, critical regulator of hemato-
poietic-cell development, involved in many de novo 
and treatment related leukaemias. 
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Clinics and pathology 
Disease 
Non Hodgkin lymphoma (NHL) 

Phenotype/cell stem origin 
Found in diffuse large B-cell lymphoma (DLBCL) and 
Burkitt lymphoma (BL). 

Epidemiology 
4 cases to date, three cases of DLBCL and one BL. 
There was 1 male and 3 female patients. Patients were 
in their fifties (53, 53, and 56 years), apart from an 
eleven year old patient, but the latter was affected by a 
cancer-prone disease/chromosome instability 
syndrome, namely an ataxia telangiectasia (AT). 

Clinics 
The t(3;8) may be considered as a secondary event in 
two DLBCL cases harbouring a t(14;18) (Bertrand et 
al., 2007). In the third case of DLBCL, the disease was 
thought to have evolved from a follicular lymphoma, 
also present in the patient in various organs (Wang et 
al., 2007). To be noted that the patient with a BL had 
AT (Sandlund et al., 2006). 

Prognosis 
Prognostic data were available from only two of the 
four cases, with survivals noted at: 26+ mths and 114+ 
mths (in two DLBCL cases). 

Cytogenetics 
Cytogenetics morphological 
Major karyotypic abnormalities in 3 of 4 cases, with +7 
in two patients, +12 in two cases,  
t(14;18)(q32;q21) in two cases, and duplication of the 
der(8)t(3;8) in two cases; Other anomalies known to be 

recurrent in lymphoid malignancies were also present: 
del(6q) (one case), and +18 (one case). 

Genes involved and proteins 
BCL6 
Location 
3q27 
Protein 
Transcription factor, with a N-term BTB/POZ domain 
and 6 zinc fingers. The protein can bind to sequence 
specific DNA and repress its trans-cription. Normally 
expressed in germinal center B and T cells 

MYC 
Location 
8q24 
Protein 
Transcription factor, with a DNA binding domain, a 
helix-loop-helix domain and a leucine zipper. Forms 
heterodimers with MAX; MYC/MAX complexes bind 
DNA, activate transcription and promote cell 
proliferation and transformation. 

Result of the chromosomal 
anomaly 
Hybrid gene 
Description 
5' BCL6 is translocated next to MYC on the der(8). 
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Clinics and pathology 
Disease 
Myeloproliferative syndrome with hypereosino-philia. 

Epidemiology 
Only one case to date, a 54-year old male patient. 

Evolution 
Complete remission could not be obtained with 
hydroxyurea. Following the identification of the 
PDGFRA hybrid gene, imatinib was started, and the 
patient entered complete cytogenetic remission (CR). 
The patient is still in RT-PCR CR after 18 months 

Genes involved and proteins 
PDGFRA 
Location 
4q12 
Protein 
Composed of an extracellular domain, a trans-
membrane domain, a juxtamembrane domain, and an 
intracellular domain; receptor tyrosine kinase; forms 
homodimer, and heterodimer with PDGFRB; 
dimerization induces kinase domain activation, leading 
to the activation of intracellular signalling pathways 
(Kawagishi et al., 1995). 
Somatic mutations 
Hybrid genes between various partners and PDFRGA 
occur in chronic myeloid leukaemia-like diseases with 
eosinophilia, mostly chronic eosino-philic leukemia 
(CEL), a clonal hypereosinophilic syndrome. PDGFRA 
partners known so far are: STRN (2p24) (Curtis et al., 
2007), FIP1L1 (4q12) (Cools et al., 2003; Pardanani et 
al., 2004), CDK5RAP2 (9q33) (Walz et al., 2006), 
KIF5B (10p11) (Score et al., 2006), ETV6 (12p13) 
(Curtis et al., 2007), and BCR (22q11) (Baxter et al., 
2002). Mutations of platelet-derived growth factor 

receptor-alpha (PDGFRA) are observed in a subset of 
gastrointestinal stromal tumors (GISTs) (Heinrich et 
al., 2003). Tumours with PDGFRA involvement are 
responsive to imatinib therapy (Cools et al., 2003; 
Debiec-Rychter et al., 2004). 

KIF5B 
Location 
10p11 
Protein 
Composed of a N-terminal globular domain that 
hydrolyzes ATP and binds microtubule, a central alpha-
helical coiled-coil domain (dimerization domain); and a 
C-terminal domain that interacts with other proteins, 
vesicles and membranous organelles. Kif5B is involved 
in microtubule-based polarized vesicular transport to 
the apical membrane in polarized axonal transport in 
neurons (Nakata and Hirokawa, 2003; Jacobson et al., 
2007; Jaulin and Mostov, 2007). The role of the 
complex of syntaxin-1-syntabulin-KIF5B in axonal 
transport has been established (Cai et al., 2007). Kif5B 
and Kifc1 interact in motility and processing of early 
endocytic vesicles (Nath et al., 2007). KIF5B has been 
shown to be essential for axonal transport of 
mitochondria. KIF5B associates with the kinesin-
binding domain (KBD) of RanBP2 to determines 
mitochondria localization (Cho et al., 2007). JNK 
forms a complex with KIF5B and ß-tubulin-III in 
neurites, and TNF disturbs axonal transport of 
mitochondria via JNK (Stagi et al., 2006). 

Result of the chromosomal 
anomaly 
Hybrid gene 
Description 
In frame fusion of KIF5B exon 23 to PDGFRA exon 
12; no reciprocal PDGFRA-KIF5B product. 
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Fusion protein 
Description 
156 kDa protein of 1372 amino acids; Composed of the 
N-terminal globular domain and the central alpha-
helical coiled-coil domain (dimerization domain) of 
KIF5B, fused to the kinase domain of PDGFRA. It is 
likely that the dimerization domain induces constitutive 
activation of the kinase domain. 
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Clinics and pathology 
Disease 
Acute myeloid leukemia (AML) 

Epidemiology 
Only two cases to date, a 10-month-old male infant 
with M4-AML, who entered remission, and a 60-year-
old male patient with M1-AML who died 4 months 
after diagnosis. Both patients presented with marked 
eosinophilia (Bhambhani et al., 1986; Sanada et al., 
1989). 

Cytogenetics 
Cytogenetics morphological 
The t(5;16)(q33;q22) was the sole anomaly in both 
cases. 
 
 

Genes involved and proteins 
Note 
Genes involved in this structural anomaly are unknown, 
although it is likely that CBFb is involved in the 
disease. 
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Classification 
Carcinoid tumors are the most common type of 
neuroendocrine (NE) tumor and comprise 
approximately half of all NE tumors of the 
gastrointestinal (GI) tract. They arise from 
enterochromaffin cells of the diffuse NE cells of the 
gut. Carcinoids are commonly classified according to 
their presumed derivation from the embryonic gut: 
Foregut: Lung, bronchial, and gastric 
Midgut: Small intestine and appendiceal 
Hindgut: Rectal 
Leotlela and colleagues suggested that only NE tumors 
which secrete serotonin, those of midgut embryologic 
origin, should be referred to as "carcinoids". In 2000, 
the World Health Organization developed a 
classification system that dropped the term "carcinoid" 
entirely, recommending "neuroendocrine tumor" 
instead. This classification system uses three 
subsequent classifications based on malignant potential 
as assessed histologically: 
1. Well-differentiated neuroendocrine tumor 
2. Well-differentiated neuroendocrine carcinoma 
3. Poorly differentiated neuroendocrine carcinoma. 
Despite these recommendations, the term carcinoid 
continues to be used by many clinicians and 
researchers. 
The incidence of carcinoid tumors is estimated at 1 to 2 
cases per 100,000 people per annum. Because 
carcinoids often have an indolent clinical course, they 
are often misdiagnosed, and their true incidence is 
likely higher. A Swedish study, in which the incidence 
of carcinoid tumors was evaluated in surgical 
specimens and autopsies, estimated the true incidence 
of carcinoids to be 8.4 cases per 100,000. Sixty four 
percent of all carcinoids originate in the GI tract, and  

28% originate in the lungs or bronchi. Within the GI 
tract, small intestinal carcinoids represent 29%, rectum 
14%, stomach 5%, and appendix 5%. 

Clinics and pathology 
Note 
The diagnosis of a carcinoid tumor is based on 
histology and confirmed with immunohisto-chemical 
staining for neuroendocrine markers. Unfortunately, 
histological analysis alone cannot predict the 
aggressiveness or metastatic potential of carcinoids. Up 
to 75% of patients have metastases at the time of 
diagnosis. The following substances are secreted by 
carcinoid tumors: 
5-HT; 5-Hydroxytryptophan; Synaptophysin; 
Chromagranin A and C; Neuron-specific enolase; 
Insulin; Growth hormones (TGF-� , Platelet-derived 
growth factor, basic fibroblast growth factor); 
Bombesin; Kallikrein; Neurotensin; ACTH; Gastrin; 
Pancreatic polypeptide; Calcitonin; Substance P; 
Tachykinin; Histamine; Vasoactive intestinal peptide; 
Bradykinin. 
Carcinoid tumor production and release of these 
substances can lead to various symptoms in patients, 
including the "carcinoid syndrome", which is 
characterized by skin flushing, wheezing and shortness 
of breath, diarrhea, and facial skin lesions. Another 
serious complication that can develop in patients with 
carcinoid tumors is valvular heart disease. These 
symptoms and complications related to carcinoid 
endocrinopathy can have a deleterious effect on patient 
quality of life. 

Disease 
Bronchial / Lung Carcinoid. 
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Etiology 
Lung and bronchial carcinoids are diagnosed most 
commonly in septuagenarians and are associated with 
smoking. 

Epidemiology 
Lung and bronchial carcinoids make up about 28% of 
carcinoids, and 2% of all primary lung tumors. 

Clinics 
The tumors are usually central in location and cause 
cough, hemoptysis, wheezing, and recurrent 
pneumonia. These tumors can be classified based on 
histological features as typical (two thirds) or atypical 
(one third). 
Atypical lung and bronchial carcinoids are generally 
larger at time of diagnosis than other carcinoids. These 
tumors are metastatic in up to 50% of cases and have a 
5-year survival rate of only 40% to 75%. 
Typical lung and bronchial carcinoid tumors are found 
most often in a peripheral location, in the fifth decade 
of life, and rarely associated with the carcinoid 
syndrome. They are associated with ectopic 
adrenocorticotropic hormone (ACTH) secretion 
resulting in Cushing¹s syndrome. These tumors are 
metastatic in 12% of cases and have a 5-year survival 
rate of 93%. 

Pathology 
One third of bronchial carcinoids demonstrate atypical 
histologic features and the more aggressive phenotype. 

Treatment 
For localized typical bronchial/lung carcinoids the 
preferred treatment is wedge or segmental lung 
resection. For histologically atypical carcinoids of the 
bronchi/lungs, more aggressive treatment is 
recommended such as lobectomy. 
As with all carcinoids, bronchopulmonary carci-noids 
usually do not respond to radiation therapy or 
chemotherapy, and use of these modalities should be 
considered experimental in this patient popu-lation. 

Evolution 
Typical carcinoid tumors are usually indolent, with 
metastases reported in less than 15% of cases. 
Atypical carcinoids pursue a more aggressive course, 
metastasizing to mediastinal lymph nodes in 30% to 
50% of cases. 

Prognosis 
Long-term survival rates for patients with typical lung 
or bronchial carcinoid tumors following surgical 
resection exceed 85%. Long-term survival rates are 
significantly shorter for patients who undergo resection 
for atypical carcinoids - about 52% according to 
McCaughan et al. 

Disease 
Gastric Carcinoid. 

Etiology 
Gastric carcinoid tumors are classified into 3 types: 
Type 1: Associated with chronic atrophic gastritis; 
Type 2: Associated with the Zollinger-Ellison 
syndrome; 
Type 3: Sporadic. 

Epidemiology 
Gastric carcinoid tumors account for less than 1% of all 
gastric cancers. They comprise 5% of all GI carcinoids. 
Type 1 gastric carcinoids are the most common type, 
accounting for up to 75% of cases. Up to 10% of 
gastric carcinoids are Type 2, associated with 
Zollinger-Ellison syndrome. Between 15% and 25% of 
gastric carcinoids are sporadic, Type 3 gastric 
carcinoids. 

Treatment 
Most gastric carcinoids can be resected endosco-
pically. Cases involving larger, recurrent tumors 
require more extensive surgical resection. 
Antrectomy has been used in patients with chronic 
atrophic gastritis to eliminate the gastric produc-tion, 
and may cause the carcinoids to regress. The use of 
somatostatin analogs has resulted in gastric carcinoid 
tumor regression in patients with Zollinger-Ellison 
syndrome. In patients with sporadic Type 3 gastric 
carcinoids, which have a more aggressive biology, 
radical gastrectomy is the recommended treatment. 

Evolution 
Type 1 and 2 gastric carcinoids pursue an indolent 
course and generally do not metastasize. Sporadic Type 
3 gastric carcinoids have a more aggressive course than 
Type 1 or Type 2. Most Type 3 gastric carcinoids are 
metastatic at presentation, portending a poor prognosis. 

Disease 
Small Intestinal Carcinoid. 

Epidemiology 
Small intestinal carcinoid tumors account for 
approximately one third of all small bowel tumors. 
They comprise 29% of GI carcinoids. Small intestinal 
carcinoids are most commonly diagnosed in the sixth 
and seventh decades of life. 

Clinics 
Patients with small intestinal carcinoids frequently 
present with abdominal pain or small bowel 
obstruction. Approximately 5% to 7% of patients 
manifest symptoms of the carcinoid syndrome, and in 
these cases hepatic metastases are usually present.  
In patients with endocrinopathies, standard imaging 
techniques such as computed tomography (CT) and 
small bowel barium contrast studies often fail to 
localize the primary tumor. Small intestinal carcinoids 
are most frequently located in the distal ileum. 
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Treatment 
Small intestinal carcinoids are treated by resection of 
the small bowel primary tumor together with associated 
mesenteric metastases. Most patients who have small 
bowel carcinoids are ultimately treated with octreotide, 
which is associated a high incidence of cholelithiasis. 
Because of this, cholecystectomy should be considered 
when carcinoids are surgically resected. 

Prognosis 
Tumor size is a poor predictor of metastases, and 
metastases have been reported in association with 
tumors smaller than 5 mm. The 5-year survival rate is 
60% for patients with localized disease. It is 73% for 
those with regional metastases, and 36% for patients 
with distant metastases. 

Disease 
Appendiceal Carcinoid. 

Etiology 
Approximately two-thirds of appendiceal carcinoid 
tumors arise in the tip of the appendix, where they are 
unlikely to cause symptoms of obstruction. Ten percent 
of appendiceal carcinoids occur in the base where they 
are more prone to obstruct the appendix and cause 
acute appendicitis. It has been proposed that the 
incidence of appendiceal carcinoid tumors parallels the 
activity of subepithelial NE cells, the source of these 
tumors. The density of these NE cells peaks in the 
second decade of life and then decreases. 

Epidemiology 
Carcinoid tumors are the most common tumor of the 
appendix, accounting for more than half of all 
appendiceal malignancies and discovered in seven of 
every 1,000 appendectomy specimens. They account 
for 5% of GI carcinoids and are more common in 
women than men. The mean age at presentation is 49 
years. This may reflect the common patient age at 
appendectomy, when the tumors are often incidentally 
discovered. 

Treatment 
Simple appendectomy is indicated in patients with 
tumors less than 2 cm in diameter, based on historical 
data suggesting a low probability of metastasis. For 
tumors larger than 2 cm in diameter, right 
hemicolectomy is recommended. 

Prognosis 
Ninety-five percent of appendiceal carcinoid tumors  
are less than 2 cm in diameter. The incidence of 
metastases in these cases is low. In contrast, about 33% 
of patients who have appendiceal carcinoid tumors 
measuring more than 2 cm in diameter have either 
nodal or distant metastases. When disease is localized, 
the prognosis of appendiceal carcinoids is good. The 5-
year survival rate is 94% for local disease, 85% for 

regional disease, and 34% when distant metastases are 
present. 

Disease 
Rectal Carcinoid. 

Epidemiology 
Rectal carcinoids comprise 1-2% of all rectal cancers, 
and 14% of all GI carcinoids. Tumors less than 1 cm in 
diameter make up about 33% of all rectal carcinoids. 

Clinics 
Half of all rectal carcinoids are asymptomatic and are 
incidentally found during endoscopy performed for 
other indications, such as screening for colorectal 
cancer. Patients who are symptomatic usually present 
with rectal bleeding, pain, or constipation. 

Treatment 
For tumors less than 1 cm in diameter, local excision is 
indicated. Tumors between 1 and 2 cm in diameter, 
especially in combination with other factors such as 
symptoms at diagnosis, probably warrant more 
aggressive surgical treatment. Tumors over 2 cm in 
diameter are generally treated with a low anterior 
resection or abdominoperineal resection. 

Prognosis 
The size of the primary lesion is predictive of 
metastatic disease. Metastases occur in less than 5% of 
tumors that are less 1 cm in diameter but at a much 
higher rate when the primary lesions is greater than 2 
cm in diameter. The 5-year survival rate is 81% for 
local disease, 47% when regional metastases are 
present, and 18% with distant metastases. 

Genes involved and proteins 
MAP2 
Location: 2q34 
Note 
Microtubule-associated protein 2 (MAP2) has been 
shown to be expressed specifically in neuronally 
differentiated cells, and is a useful marker for 
distinguishing non-neuroendocrine carcinomas of the 
lung from neuroendocrine lung tumors such as 
carcinoids. 
Protein 
MAP2 is a microtubule-associated protein important 
for the assembly of cytoskeletal components. 

RAF1 
Location: 3p25 
Note 
Raf-1 activation using an estrogen-inducible Raf-1 
construct in human GI (BON) carcinoid cell line led to 
a marked reduction in neuroendocrine pheno-typic 
markers such as human achaete-scute complex like-1 
(ASCL1) and bioactive hormones and tumor markers 
5-HT, chromogranin A (CgA), and synaptophysin. 
Treatment of GI carcinoid cells with Raf-1 activator 
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ZM336372 led to a decrease in bioactive hormone 
levels, suppression of cellular proliferation, and an 
increase in cell cycle inhibitors p21 and p18, as well as 
a decrease in the neuroendocrine phenotypic marker 
ASCL1. 

CTNNB1 
Location: 3p21 
Note 
Alias: � -catenin  
Cytoplasmic accumulation of the � -catenin protein is 
present in about 30% of GI carcinoids and is absent in 
non-GI carcinoids. However, in tumors with 
accumulation of the protein, mutation in the � -catenin 
gene was not present. 
Protein 
� -catenin is part of the Wnt/� -catenin/APC signaling 
pathway which is complex and affects numerous 
cellular processes. The role of the gene product is 
varied and poorly understood in both GI and non-GI 
carcinoids. 

HES1 
Location: 3q29 
Note 
An increase in HES-1 expression in vitro causes 
suppression of pulmonary carcinoid cell growth. 

CDKN1A 
Location: 6p21 
Note 
Alias: p21 
Protein p21 up-regulation has been reported in 
appendiceal carcinoids. Its down-regulation or absence 
has been reported in pancreatic GI carcinoids. 
Protein 
A tumor suppressor, p21 is a cyclin-dependent kinase 
inhibitor. 

VEGFA 
Location: 6p12 
Note 
Alias: VEGF 
Vascular endothelial growth factor (VEGF) expression 
has been demonstrated in a variety of 
bronchopulmonary and GI carcinoids. Tumor VEGF 
expression level corresponds to presence and number 
of metastases. 
Multiple genes in the VEGF pathway reside in regions 
of frequent mutation in neuroendocrine and carcinoid 
tumors. The VEGF pathway is important in 
angiogenesis, and is implicated in a multitude of 
neoplasms. Reduction in VEGF expression causes 
reduction in tumor microvessel density and growth. 

CDKN2A 
Location: 9p21 
Note 
Alias: p16. 

Loss of heterozygosity in the p16 gene is present in 
23% of carcinoids. 
Protein 
The p16 gene is a tumor suppressor. The p16 protein is 
a cyclin-dependent kinase inhibitor whose loss can lead 
to cell cycle abnormalities. 

NOTCH1 
Location: 9q34.3 
Note 
Notch-1 signaling is minimal or absent in GI 
Carcinoids. 
Protein 
Notch-1 protein functions either as a tumor suppressor 
or oncogenic protein depending on cellular context. 
Expression of active Notch-1 via adenoviral vector or 
inducible retroviral vector in GI carcinoid cells resulted 
in growth suppression and significant reduction in NE 
tumor markers such as 5-HT, CgA, synaptophysin, 
neuron specific enolase (NSE), and ASCL1, confirming 
the tumor suppressor role of Notch-1 signaling in 
carcinoid tumors. 
Treatment of human carcinoid cancer cells with histone 
deacetylase (HDAC) inhibitors valproic acid (VPA) 
and suberoyl bishydroxamic acid (SBHA) resulted in 
activation of Notch-1 signaling and inhibition of 
carcinoid cell growth in vitro and in vivo. These 
findings suggest that Notch-1 activation with HDAC 
inhibitors may be an attractive approach for the 
treatment of these tumors. 

MEN1 
Location: 11q13 
Note 
Spanning 9 Kb and containing 10 exons. 
Carcinoids have been reported in association with 
multiple endocrine neoplasia type 1 (MEN1) since 
1953. The MEN1 gene was sequenced and cloned in 
1997. Since this time, a plethora of mutations have 
been discovered in the MEN1 gene, many with 
phenotypic consequences. Carcinoids are found in 
about 16-20% of patients with MEN1. 
Protein 
The MEN1 gene codes for the 610-amino acid protein 
menin, whose function is unknown. 

CCND1 
Location: 11q13 
Note 
Cyclin D1 up-regulation has been reported in 
appendiceal carcinoids. 
Protein 
Cyclin D1 forms a complex with cyclin-dependent 
kinases and acts to promote the cell cycle. 

SDHD 
Location: 11q23 
Note 
Alternatively called PGL and PGL1. 
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Succinate dehydrogenase complex subunit D (SDHD) 
is a tumor suppressor gene. Mutations in this gene are 
reported in 22% of ileal and duodenal carcinoids, and 
are not typically present in non-midgut carcinoids. 
Protein 
SDHD is a subunit of the succinate dehydrogenase 
complex on the inner mitochondrial membrane which 
is involved in the citric acid cycle and electron 
transport chain of metabolism. It has been postulated 
though not confirmed that the loss of functionality of 
this subunit causes a hypoxic response in affected cells 
that contributes to the tumor phenotype. 

CDKN1B 
Location: 12p13 
Note 
Alias: p27 
Protein p27 down-regulation or absence has been 
reported in pancreatic GI carcinoids. 
Protein 
A tumor suppressor, p27 is a cyclin-dependent kinase 
inhibitor. 

NF1 
Location: 17q11.2 
Note 
Loss of heterozygosity mutations in the neuro-fibromin 
1 (NF1) gene have been reported in association with 
gastric carcinoids. NF1 is most commonly associated 
with the disease neurofibromatosis type 1. 
Protein 
NF1 encodes the protein called neurofibromin, a 
negative regulator of the Ras oncogene. Loss of NF1 
activity also leads to constitutively active mTOR and 
tumor formation. 

BCL2 
Location: 18q21 
Note 
The bcl-2 family of proteins affects the growth of 
pulmonary carcinoids. The protein bcl-2 is expres-sed 
at higher levels in atypical pulmonary carcinoids than 
in typical pulmonary carcinoids. The protein bcl-x is 
expressed at higher levels in typical pulmonary 
carcinoids. It is possible that this balance is responsible 
for the more aggressive clinical course of atypical 
pulmonary carcinoids. 
Protein 
The bcl-2 protein is thought to be anti-apoptotic 
whereas the bcl-x protein is thought to be pro-
apoptotic. 

To be noted 
Note 
Tumor Markers: Elevated urine levels of the serotonin 
(5-HT) breakdown product 5-HIAA is a highly specific 
indicator of midgut (small bowel, gastric) carcinoids. It 
is not useful in monitoring foregut (bronchial, lung) or 

hindgut (rectal) carcinoids, as these do not typically 
secrete serotonin.  
Chromogranin A (CgA) is an acidic glycoprotein that is 
contained in the neurosecretory vesicles of NE cells. It 
is an elementary tumor marker in NE tumor diseases, 
including carcinoids. CgA is more sensitive than 
urinary 5-HIAA and is useful in carcinoids of the fore-, 
mid-, and hindgut. In the clinical setting, CgA has been 
used an indicator of response to treatment. 
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I. Cuvier and the fixism theory (1769-1832) 

II. Lamarck and the transformism theory (1744-1829)  

III. Darwin and the Evolution (1809-1882) 

III.1. The inferences of the Darwin theory 
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III.3. After Darwin 
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IV. Population Genetics 

IV.1. Hypothesis 

IV.2. Role of diverse factors (evolutionary forces)  on the allele frequency 
variation through generations 

 

I. Cuvier and the fixism theory 
(1769-1832) 
·  Fixism and Creationism. 

Until the 19th century in Occident, the most 
largely believed theory was fixism. The species 
always are what they have been since their 
creation. They are fixe and never change because 
the world has been created by God. This theory is 
similar to creationism.  

II. Lamarck and the transformism 
theory (1744-1829) 
·  In contact with nature the organisms acquire 

capacities to become more and more complex. 
·  Nature generates circumstances that forces 

organisms to change to be adapted to their 
environment (these circumstances are called the 
Lamarckian factors). 
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·  The transformism or the assertion of a 
principle of change. 

1. The compared morpho-anatomy and the 
palaeontology show that the organisation of the 
living organisms follows a scale of complexity. 

2. « Time and circumstances » are at the origin 
of the gradually change observed in the fossil 
series. 

3. This gradual transformation indicates a 
relationship between related species. 

III. Darwin and the Theory of 
Evolution (1809-1882) 

III.1. The inferences of Darwin 
theory 
1.  Environmental resources are limited for an 

increasing number of individuals. 
2.  The survival is not due to random, but depends on 

the hereditary constitution of the individuals. 
3.  The natural selection that takes effect on the 

countless successive generations is the 
beginning of a slow and continuous change of 
populations. 

III.2. The implications of the 
Darwin theory 
1.  Refutation of Fixism. 
2.  Refutation of Essentialism. 
3.  Refutation of Creationism. 
4.  Refutation of Anthropocentrism. 
5.  A classification based on genealogy. 

III.3. After Darwin 
1.  The non-inheritance of acquired characters 

(Weismann 1883). 
2.  The genetic foundations of heredity. 
3.  The population genetics. 

IV. Population Genetics 

IV.1. Hypothesis 
o Does a genetic polymorphism exist in 

natural populations? 
o Which models are able to describe 

the allele frequencies in these populations? 
o Which natural selections modify 

these allele frequencies? 

IV.2. Role of diverse factors 
(evolutionary forces) on the allele 
frequencies variation through 
generations 
IV.2.1. Hardy-Weinberg Model (basic model) 
�  Random mating (gametes 

and individuals): the panmictic hypothesis. 
�  No mutation or migration. 

�  No selection. 
�  Population of infinite size. 

Under these conditions the allele frequencies do not 
vary. 
IV.2.2. Impact of Consanguinity 

�  Mating occurs according to 
the lineage with for consequence the existence 
of common ancestor(s). 

�  Mating occurs between 
related. In this case, their descendants are 
consanguineous. 

�  The consanguinity increases 
the probability to constitute homozygous 
genotypes. 

�  Repeated consanguine 
mating leads to the homogenisation of 
populations and therfore to the no maintenance 
of the genetic polymorphism. 

IV.2.3. Impact of Genetic drift 
�  The genetic drift leads to a 

homogenisation of populations and therefore not 
to the maintenance of the genetic 
polymorphism. 

IV.2.4. Impact of selection 
The differential selection between phenotypes (and thus 
between genotypes) leads to the fixation of an 
advantaged allele, if the selective value of the 
homozygous for this allele is higher than any of the 
others genotypes or it leads to the maintenance of a 
genetic polymorphism, if the selective value of the 
heterozygous is higher than the others genotypes. 
IV.2.5. Combine impact of the genetic drift and 
mutations: The neutral theory of evolution 

�  Mr Motoo Kimura (1924 - 
1994) proposes a model in which the different 
mutations have no differential impact on the 
survival of the bearer. The mutations are 
selectively neutral. 

�  These mutations occur 
randomly and disappear more or less quickly 
depending on the action of genetic drift, 
according to the population size which is always 
constant (N individuals, 2N gametes). 

�  No selection --> the alleles 
are selectively neutral. 

�  Mutations: the neutral 
mutation rate (µ) (for a locus and by generation, 
it is 10-5- 10-6). 

�  Model: with an infinite 
number of alleles. 

�  These results are based on 
several hypothesis: 
* Constant accumulation of mutations 
(molecular clock hypothesis). 
* There are as many alleles lost by genetic drift 
as new alleles produce by mutation (equilibrium 
mutation drift). 
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* The process of fixation can be extremely long 
(4N generations). 
* 4N = the average time for a new neutral allele 
to replace the former. Then, the time for this 
allele to be fixed is of 4N generations (N the 
population size) (coalescence time). 
* 1/µ = the substitution time for a new neutral 
allele to replace the former (in number of 
generations). 
* The fixations are probably concentrated when 
the specie is constituted of few individuals (as in 
its beginning) during the process of speciation. 
 
 
 

IV.2.6. The new synthesis theory of evolution or the 
evolutionary synthesis 
It was elaborated in the 40-50’s and it modifies and 
improves Darwin theory. 
It is Theodosius Dobzhansky (1900-1975), (naturalist 
then geneticist) who revised the evolutionism. In his 
book "Genetics and the Origin of Species", he 
considers that under the action of natural selection, all 
the evolutionary phenomena are the result of change in 
the gene frequency within the line. 
Gradual evolution is explained by the interactions 
between mutations and recombination through the 
screen of natural selection. 
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