t(1;12)(q21;q24)

Sang-Guk Lee, Tae Sung Park, Jong Rak Choi

Department of Laboratory Medicine, Yonsei University College of Medicine, 250 Seongsanno, Seodaemun-gu, Seoul 120-752, Korea (SGL); Department of Laboratory Medicine, Kyung Hee University College of Medicine, 1 Hoegi-dong, Dongdaemun-gu, Seoul 130-702, Korea (TSP); Department of Laboratory Medicine, Yonsei University College of Medicine, 250 Seongsanno, Seodaemun-gu, Seoul 120-752, Korea (JRC)

Published in Atlas Database: September 2009

Online updated version: http://AtlasGeneticsOncology.org/Anomalies/t0112q21q24ID1531.html

DOI: 10.4267/2042/45124

This article is an update of: Huret JL. t(1;12)(q21;q24). Atlas Genet Cytogenet Oncol Haematol 2009;13(11):880.

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 2.0 France Licence. © 2010 Atlas of Genetics and Cytogenetics in Oncology and Haematology

Identity

Clinics and pathology

Disease
Acute myeloid leukaemia (AML), myelodysplastic syndrome (MDS)

Epidemiology
Only 3 cases to date, a 24-year-old female patient with a M2-AML, a patient with a treatment related AML (t-AML), and a 48-year-old patient with MDS (Koo et al., 1998; Olney et al., 2002; Park et al., 2009). Although it is a rare chromosomal abnormality, it may be an aberration related to myeloid neoplasms including AML and MDS.

Prognosis
No detailed data available. However, one of them (Park et al., 2009) received bone marrow transplantation; complete donor chimerism was maintained for thirteen months until last follow up.
Cytogenetics

Cytogenetics morphological

It shows balanced chromosomal translocation between 1q21 and 12q24.

Additional anomalies

The patient with a M2-AML also had an i(17q). The patient with a MDS had +8, +der(12)t(1;12) additionally.

Genes involved and proteins

Note

The genes involved in this anomaly are unknown.

References

This article should be referenced as such: