Solid Tumour Section
Mini Review

Soft tissue tumors: t(2;13)(q35;q14) in alveolar rhabdomyosarcoma

Frederic G Barr

Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA (FGB)

Published in Atlas Database: July 2010

Online updated version: http://AtlasGeneticsOncology.org/Tumors/t213q35q14AlvRhabdoID5013.html

DOI: 10.4267/2042/45008

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 2.0 France Licence.
© 2011 Atlas of Genetics and Cytogenetics in Oncology and Haematology

Clinics and pathology

Phenotype / cell stem origin
Alveolar rhabdomyosarcoma (ARMS).

Epidemiology
Occurs in ~60% of ARMS cases; patients tend to be older children (and young adults) compared to those with t(1;13)-positive ARMS tumors.

Clinics
Tumors tend to show higher invasiveness compared to those with t(1;13)-positive ARMS tumors. In metastatic cases, there is a high incidence of bone marrow involvement.

Prognosis
Outcome is worse than in rhabdomyosarcoma cases without a translocation (including embryonal rhabdomyosarcoma and translocation-negative ARMS). In one study, patients with localized t(2;13) and t(1;13)-positive ARMS had comparable outcomes whereas a recent study with small numbers suggested that localized t(1;13) tumors had a better outcome than those with localized t(2;13) tumors. Among patients presenting with metastatic disease, those with t(2;13)-positive tumors had a significantly poorer outcome than those with t(1;13)-positive tumors. Note: these studies are based on molecular detection of the translocations.

Cytogenetics

Cytogenetics Morphological
Reciprocal balanced translocations are generally present in cases with the associated molecular fusion.

Cytogenetics Molecular
The product of the 2;13 translocation is amplified in ~10% of t(2;13)-positive cases.
Additional anomalies
Amplification events involving 2p24 and 12q14 (as determined by DNA-based array studies).

Genes involved and proteins

PAX3
- **Location**: 2q35
- **Protein**: Transcription factor - paired box (PAX) family.

FOXO1 (FKHR)
- **Location**: 13q14
- **Protein**: Transcription factor - forkhead box (FOX) family.

Result of the chromosomal anomaly

Hybrid Gene

Note
A variant PAX3-FOXO4 fusion (also known an PAX3-AFX1) associated with a (X;13)(q13;q35) has been identified in one ARMS case.

Description
The 2;13 translocation breaks within intron 7 of the PAX3 gene and intron 1 of the FOXO1 gene on chromosome 13 to generate PAX3-FOXO1 fusion gene as well as a reciprocal FOXO1-PAX3 fusion gene. In ~10% of PAX3-FOXO1-positive ARMS tumors, the FOXO1-PAX3 gene is not detectable.

Transcript
The PAX3-FOXO1 fusion transcript consists of the first 7 exons of PAX3 fused to FOXO1 exons 2 and 3, and the FOXO1-PAX3 fusion transcript consists of the first exon of FOXO1 fused to the last two exons of PAX3. In ~35% of PAX3-FOXO1-positive ARMS tumors (with evidence of PAX3-FOXO1 transcript), the FOXO1-PAX3 transcript is not detectable. There is evidence that the PAX3-FOXO1 fusion transcript is upregulated relative to the wild-type PAX3 transcript by a transcriptional mechanism.

Fusion Protein

Description
The PAX3-FOXO1 fusion gene has a 2508 nt open reading frame encoding an 836 amino acid fusion protein. This fusion protein is a transcription factor with a PAX3 DNA binding domain and FOXO1 transactivation domain.

Expression / Localisation
Nuclear.

Generation of chimeric genes by the 2;13 translocation in ARMS. The exons of the wild-type and fusion genes are shown as boxes above each map and the translocation breakpoint distributions are shown as line segments below the map of the wild-type genes.
Oncogenesis

Transcription dysregulation. At the cellular level there is evidence of alterations in control of growth, survival, differentiation, and motility. In conjunction with other genetic changes, recipient cells show transformation in culture and tumorogenesis in injected mice. A conditional knock-in mouse model of the PAX3-FKHR fusion has been generated and successfully produces ARMS tumors.

References

Davis RJ, Barr FG. Fusion genes resulting from alternative chromosomal translocations are overexpressed by gene-specific mechanisms in alveolar rhabdomyosarcoma. Proc Natl Acad Sci U S A. 1997 Jul 22;94(15):8047-51

del Peso L, González VM, Hernández R, Barr FG, Núñez G. Regulation of the forkhead transcription factor FKHR, but not the PAX3-FKHR fusion protein, by the serine/threonine kinase Akt. Oncogene. 1999 Dec 2;18(51):7328-33

Khan J, Bittner ML, Saal LH, Teichmann U, Azorsa DO, Gooden GC, Pavan WJ, Trent JM, Meltzer PS. cDNA microarrays detect activation of a myogenic transcription program by the PAX3-FKHR fusion oncogene. Proc Natl Acad Sci U S A. 1999 Nov 9;96(23):13284-9

Barr FG. Gene fusions involving PAX and FOX family members in alveolar rhabdomyosarcoma. Oncogene. 2001 Sep 10;20(40):5736-46

Xia SJ, Barr FG. Analysis of the transforming and growth suppressive activities of the Pax3-FKHR oncprotein. Oncogene. 2004 Sep 9;23(41):6864-71

Ebaumer M, Wachtel M, Nigglig FK, Schaffer BW. Comparative expression profiling identifies an in vivo target gene signature with 1FAP2B as a mediator of the survival function of Pax3/FKHR. Oncogene. 2007 Nov 8;26(51):7267-81

Naini S, Etheridge KT, Adam SJ, Qualman SJ, Bentley RC, Counter CM, Linardic CM. Defining the cooperative genetic changes that temporally drive alveolar rhabdomyosarcoma. Cancer Res. 2008 Dec 1;68(23):9583-8

Xia SJ, Holder DD, Pawel BR, Zhang C, Barr FG. High expression of the PAX3-FKHR oncprotein is required to promote tumorigenesis of human myoblasts. Am J Pathol. 2009 Dec;175(6):2600-8

This article should be referenced as such: