Soft tissue tumors: t(1;13)(p36;q14) in alveolar rhabdomyosarcoma

Frederic G Barr

Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA (FGB)

Published in Atlas Database: July 2010
Online updated version: http://AtlasGeneticsOncology.org/Tumors/t113p36q14AlvRhabdoID5012.html
DOI: 10.4267/2042/45007
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 2.0 France Licence.
© 2011 Atlas of Genetics and Cytogenetics in Oncology and Haematology

Clinics and pathology

Phenotype / cell stem origin
Generally found in alveolar rhabdomyosarcoma (ARMS); also found in rare cases diagnosed as embryonal rhabdomyosarcoma (ERMS).

Epidemiology
Occurs in ~20% ARMS cases and <5% of ERMS cases: patients tend to be younger children compared to those with t(2;13)-positive ARMS tumors.

Clinics
Tumors tend to show lower invasiveness compared to those with t(2;13)-positive ARMS tumors. In metastatic cases, there is a low incidence of bone marrow involvement.

Prognosis
In one study, patients with localized t(2;13) and t(1;13)-positive ARMS had comparable outcomes whereas a recent study with small numbers suggested that localized t(1;13) tumors had a better outcome than those with localized t(2;13) tumors. Among patients presenting with metastatic disease, those with t(1;13)-positive tumors had a significantly better outcome than those with t(2;13)-positive tumors. Note: these studies are based on molecular detection of the translocations.

Cytogenetics

Cytogenetics Morphological
Though a balanced 1;13 is sometimes visible in cases with the associated molecular fusion event, in many cases the balanced translocation is not visible. Instead the molecular fusion is found associated with a subsequent amplification event, usually double minute chromosomes.

Cytogenetics Molecular
The product of the 1;13 translocation is amplified in ~90% of t(1;13)-positive cases.

Additional anomalies
Amplification events involving 2p24 and 13q31 (as determined by DNA-based array studies).
Genes involved and proteins

PAX7

Location

1p36

Protein

Transcription factor - paired box (PAX) family.

FOXO1 (FKHR)

Location

13q14

Protein

Transcription factor - forkhead box (FOX) family.

Result of the chromosomal anomaly

Hybrid Gene

Description

The 1:13 translocation breaks within intron 7 of the PAX7 gene and intron 1 of the FOXO1 gene on chromosome 13 to generate a PAX7-FOXO1 fusion gene as well as a reciprocal FOXO1-PAX7 fusion gene. In ~55% of PAX7-FOXO1-positive ARMS tumors, this FOXO1-PAX3 gene is not detectable. In cases with fusion gene amplification, the PAX7-FOXO1 fusion gene is amplified whereas the reciprocal FOXO1-PAX7 fusion gene is not.

Transcript

The PAX7-FOXO1 fusion transcript consists of the first 7 exons of PAX3 fused to FOXO1 exons 2 and 3. There is evidence that the PAX7-FOXO1 fusion transcript is upregulated relative to the wild-type PAX7 transcript, presumably due to increased copy number of the fusion gene by amplification.

Fusion Protein

Description

The fusion gene has a 2484 nt open reading frame encoding an 828 amino acid fusion protein. This fusion protein is a transcription factor with a PAX7 DNA binding domain and FOXO1 transactivation domain.

Expression / Localisation

Nuclear.

Oncogenesis

Transcription dysregulation. At the cellular level there is evidence of alterations in control of growth. In conjunction with other genetic changes, recipient cells show transformation in culture and tumorigenesis in injected mice.

References

Davis RJ, D'Cruz CM, Lovell MA, Biegel JA, Barr FG. Fusion of PAX7 to FKHR by the variant t(1;13)(p36;q14) translocation in alveolar rhabdomyosarcoma. Cancer Res. 1994 Jun 1;54(11):2869-2872

Davis RJ, Barr FG. Fusion genes resulting from alternative chromosomal translocations are overexpressed by genespecific mechanisms in alveolar rhabdomyosarcoma. Proc Natl Acad Sci U S A. 1997 Jul 22;94(15):8047-51

Barr FG. Gene fusions involving PAX and FOX family members in alveolar rhabdomyosarcoma. Oncogene. 2001 Sep 10;20(40):5736-46

Krková L, Mrhalová M, Sumerauer D, Kodet R. Rhabdomyosarcoma: molecular diagnostics of patients classified by morphology and immunohistochemistry with emphasis on bone marrow and purged peripheral blood progenitor cells involvement. Virchows Arch. 2006 Apr;448(4):449-58

This article should be referenced as such: