GPNMB (glycoprotein (transmembrane) nmb)

Shyam A Patel, Philip K Lim, Pranela Rameshwar

University of Medicine and Dentistry of New Jersey - New Jersey Medical School, Newark, New Jersey, USA (SAP, PKL, PR)

Published in Atlas Database: October 2009
Online updated version: http://AtlasGeneticsOncology.org/Genes/GPNMBID40739ch7p15.html
DOI: 10.4267/2042/44825

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 2.0 France Licence.
© 2010 Atlas of Genetics and Cytogenetics in Oncology and Haematology

Identity

Other names: HGFIN; NMB; osteoactivin
HGNC (Hugo): GPNMB
Location: 7p15.3

DNA/RNA

Description
The GPNMB gene maps (Homo sapiens) on the plus strand of chromosome 7p15 between 23,252,841 and 23,281,254 bp from the promoter and spans 28,414 bp.

Transcription
2 transcript variants:
Variant 1:
- 2775bp, accession #: NM_001005340.1
- the longer transcript
- encodes the longer isoform (isoform a)
- open reading frame from bp 162 to 1880
- 11 exons.

Variant 2:
- accession #: NM_002510.2
- undergoes alternative splicing and uses an in-frame splice site
- conserved N- and C-terminals compared to isoform a, but decreased in length.

Protein

Note
The GPNMB gene, which is the human homolog of murine osteoactivin, encodes a type I transmembrane glycoprotein. It has homology to the melanocyte specific protein precursor pMEL17. GPNMB expression is inversely correlated with aggressiveness of melanoma cell lines. GPNMB is thought to be inversely correlated with metastatic potential, although limited data is available.

Description
Two protein isoforms exist: isoform a: 572 aa; isoform b: 560 aa.

Expression
GPNMB is expressed in osteoclasts, dendritic cells, macrophages, and breast epithelia. Its expression is nearly undetectable in monocytes but increases upon conversion of monocytes to macrophages.

Localisation
GPNMB localizes to the plasma membrane, as it is a type I transmembrane glycoprotein. It is also found in melanosomes and membrane-bound vesicles in the cytoplasm.

Function
GPNMB is involved in binding to heparin sulfate and integrins. It functions in mineralization of bone and differentiation of osteoblasts. It also functions in cellular adhesion. It is thought to reduce inflammation involving macrophages.

Homology
Homo sapiens GPNMB shares sequence homology with mouse and rat sequences. GPNMB shares structural homology with neurokinin 1 (NK1) and can interact with the NK ligand substance P.

Implicated in
Breast cancer
Note
It is unclear to date whether GPNMB plays a tumor
suppressive role or oncogenic role in breast cancer.

**Disease**

In a murine model, osteoactivin (OA) has been associated with enhanced invasiveness of breast cancer cells in vivo, and forced overexpression of OA in weakly bone metastatic cells lines resulted in increased migratory and invasive characteristics in vitro (Rose et al., 2007). Furthermore, analysis of 51 breast cancer cell lines revealed higher osteoactivin expression than normal breast MCF-12A cells and in estrogen receptor negative breast tumors (Rose and Siegel, 2007). However, other studies with non-tumorigenic human breast cancer cells have shown that there was increased migration and evidence of transformation and loss of contact dependency in the absence of GPNMB/HGFIN (Metz et al., 2007).

**Glioblastoma multiforme (GBM)**

**Note**

In immunocompromised mice, glioma cells expressing osteoactivin and osteonectin (two structurally bone-related genes) developed a highly invasive phenotype and invaded the brain along blood vessels when implanted intracranially (Rich et al., 2003).

**Disease**

Evaluation of 50 GBM patient tumor samples revealed that 35 out of 50 samples (70%) were positive for GPNMB wild-type and splice variant transcripts while the remaining 30% were positive for wild-type only (Kuan et al., 2006). This is in contrast to normal brain samples that expressed little or no GPNMB mRNA (Kuan et al., 2006).

**Prognosis**

Detection of GPNMB mRNA and surface membrane protein in glioma cells may potentially be used as a tumor-associated antigen for targeting by therapeutic treatment (Kuan et al., 2006).

**Melanoma**

**Note**

Analysis of a cDNA library between lowly and highly metastatic human melanoma showed the preferential expression of GPNMB in low-metastatic cell lines (Weterman et al., 1995). Additionally, transfection of partial GPNMB cDNA into highly-metastatic melanoma cell line resulted in slower subcutaneous tumor growth in nude mice (Weterman et al., 1995).

**Disease**

A potential therapeutic agent in the treatment of malignant melanomas is an antibody-drug conjugate targeting GPNMB (Pollack et al., 2007). Intravenous administration of the immunoconjugate in athymic mice with human melanoma xenografts showed inhibition of tumor growth and complete regression of the tumor (Pollack et al., 2007).

**End-stage kidney disease**

**Note**

Macrophages involved in uremia have elevated levels of GPNMB expression. Its role in end-stage kidney disease may relate to its role in soft tissue calcification and arteriosclerosis (Pahl et al., 2009).

**Acute liver injury**

**Note**

In normal rat livers, OA was found to be expressed in high levels in Kupffer cells and peritoneal macrophages (Haralanova-Ilieva et al., 2005). Upon induction of acute liver injury after carbon tetrachloride administration, OA expression was upregulated after 2 days and returned to normal levels after 7 days (Haralanova-Ilieva et al., 2005). In normal human liver, OA RNA was not detected while fulminant hepatitis B and C infections, paracetamol intoxication, and liver cirrhosis all resulted in positive OA RNA levels (Haralanova-Ilieva et al., 2005).

**Osteopetrosis**

**Note**

OA cDNA was found to be overexpressed 3- to 4-fold in rats with osteopetrotic bones when compared to normal rat long bones (Safadi et al., 2001). Furthermore, OA mRNA was primarily localized in cuboidal osteoblasts lining bone surfaces (Safadi et al., 2001).

**Disease**

Osteopetrosis, also known as marble bone disease, is a rare hereditary disease which results in thickening and hardening of bones due to deficient osteoclast activity (Kumar et al., 2003). OA is expressed at highest levels in primary osteoblasts and thus, may account for the imbalance in activity of osteoblasts and osteoclasts in osteopetrosis (Sadafai et al., 2001).

**References**

Weterman MA, Ajubi N, van Dinter IM, Degen WG, van Muijen GN, Ruitter DJ, Bloemers HP, nmb, a novel gene, is expressed in low-metastatic human melanoma cell lines and xenografts. Int J Cancer. 1995 Jan 3;60(1):73-81


Rose AA, Siegel PM. Osteoactivin/HGFIN: is it a tumor suppressor or mediator of metastasis in breast cancer? Breast Cancer Res. 2007;9(6):403


This article should be referenced as such: