Gene Section
Mini Review

STEAP1 (Six Transmembrane Epithelial Antigene of the Prostate 1)
Cecília Santos, Sílvia Socorro, Cláudio Maia

Universidade da Beira Interior, Research Centre of Health Sciences, Av. Infante D. Henrique, 6200-506, Covilha, Portugal (CS, SS, CM)

Published in Atlas Database: June 2009
Online updated version: http://AtlasGeneticsOncology.org/Genes/STEAP1ID44482ch7q21.html
DOI: 10.4267/2042/44760

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 2.0 France Licence.
© 2010 Atlas of Genetics and Cytogenetics in Oncology and Haematology

Identity
Other names: STEAP; PRSS24; MGC19484
HGNC (Hugo): STEAP1
Location: 7q21.13
Local order: Other genes in the vicinity of STEAP1 include ZNF804B (zinc finger protein 804B), dpy-19-like 2 pseudogene 4 (from C. elegans) and STEAP2.

DNA/RNA
Description
10.4 kb consisting of 5 exons.

Transcription
1,330 kb transcript; 1195 bp ORF.

Protein
Description
339 amino acids (NCBI: AF186249); MW 40 kDa, contains 6 transmembrane helical domains (table 1) and a theoretical pI of 9.28.

Expression
Normal murine tissues: bone marrow, brain, colon, duodenum, liver, heart, ileum, kidney, lung, pancreas, placenta, prostate, skeletal muscle, thymus, testis.

Localisation
Cell membrane.

Function
STEAP1 was first identified as a prostate-specific cell-surface antigen, over-expressed in human prostate cancer, and in the spontaneous transgenic mouse model of prostate cancer, by suppressive subtractive hybridization. It is also expressed in several human cancer cell lines obtained from prostate, breast, pancreas, bladder, gastrointestinal tract, testis, ovary, cervix, Ewing sarcoma, and melanomas, and in malignant tumours from several different tissues (eg. prostate, breast, bladder, lung), with little or no expression in vital organs. Recent data showed that STEAP1 is involved in intercellular communication between adjacent cells in culture, and that it seems to favour tumour development.
STEAP gene organization, mRNA transcripts and predicted protein structure. Green boxes correspond to exons.

<table>
<thead>
<tr>
<th>No.</th>
<th>N terminal</th>
<th>transmembrane region</th>
<th>C terminal</th>
<th>type</th>
<th>length</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>70</td>
<td>QWHLPIKIAIIASLTFLYTLR</td>
<td>92</td>
<td>SECONDARY</td>
<td>23</td>
</tr>
<tr>
<td>2</td>
<td>114</td>
<td>INKVLPMSITLLALVYLPGVIA</td>
<td>136</td>
<td>PRIMARY</td>
<td>23</td>
</tr>
<tr>
<td>3</td>
<td>163</td>
<td>QFGLLSFFAVLHAIYSLYPM</td>
<td>184</td>
<td>SECONDARY</td>
<td>22</td>
</tr>
<tr>
<td>4</td>
<td>219</td>
<td>YVSLGIVGLAILLAVTSIPSV</td>
<td>241</td>
<td>PRIMARY</td>
<td>23</td>
</tr>
<tr>
<td>5</td>
<td>254</td>
<td>QSKLGVSLLLLGTIHALIFAWNK</td>
<td>276</td>
<td>SECONDARY</td>
<td>23</td>
</tr>
<tr>
<td>6</td>
<td>292</td>
<td>MIAVFIPIVVLIFKSIFLPCL</td>
<td>313</td>
<td>PRIMARY</td>
<td>22</td>
</tr>
</tbody>
</table>

Table 1—Sequence of the 6 transmembrane helices.

Its structure prediction, and location at cell-cell junctions, suggest that STEAP1 must be a channel, or a transport protein. Its cell surface location in all tumour types analyzed so far, and its absence in most vital organs in humans, turned STEAP1 into a potential target for anti-tumour immunotherapy, which has already been used in animal models of cancer with promising results. In addition, high levels of STEAP mRNA have been detected in the circulation of cancer patients increasing the potential of STEAP as a diagnosing marker for human cancer.

Homology

Highest levels of homology with the other members of the family in the following order: STEAP2, STEAP3 and STEAP4.

Mutations

Note
No mutations have been identified so far.

Implicated in

Various cancers

Note
Prostate cancer, breast cancer, bladder cancer, lung cancer. STEAP1 is overexpressed in all these types of tumours compared to normal tissue.

References

This article should be referenced as such: