AIFM2 (apoptosis-inducing factor, mitochondrion-associated, 2)

Miroslav Varecha

Centre for Biomedical Image Analysis, Faculty of Informatics, Masaryk University, Botanicka 68a, Brno 60200, Czech Republic (MV)

Published in Atlas Database: June 2009

Online updated version: http://AtlasGeneticsOncology.org/Genes/AIFM2ID41842ch10q22.html

DOI: 10.4267/2042/44747

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 2.0 France Licence.

© 2010 Atlas of Genetics and Cytogenetics in Oncology and Haematology

Identity

Other names: AMID; PRG3; RP11-367H5.2
HGNC (Hugo): AIFM2
Location: 10q22.1

DNA/RNA

Description

The gene spans approximately 20.66 kb. Number of exons: 14, minus strand.

Transcription

The length of AIFM2 transcript is 3240 bp.

Protein

![Stably transfected (by lipofection) living cells U-2 OS (human osteosarcoma) cell line with plasmid producing red fluorescent fusion protein AIFM2-thcRed.](image)

Description

AIFM2 is oxidoreductase of 373 AA lengt. It is predicted to take part in caspase-independent apoptosis similarly to homologous AIFM1 (AIF, PDCD8). AIFM2 is p53-responsive gene and production of AIFM2 was found to be suppressed in many human cancers.

Expression

AIFM2 was detected in most healthy tissues in form of two transcripts (1.8 and 4.0 kb). It is highly expressed in heart, moderately in liver and skeletal muscles, and expressed at low levels in placenta, lung, kidney, and pancreas.

Localisation

Cytoplasmic side of cellular membranes.

Function

Oxidoreductase, that may be important in mediating a TP53/p53-dependent apoptotic response. Predicted to be caspase-independent effector of apoptotic cell death, but not shown by other authors. Function of this protein is thus unknown.

Homology

Homologous to AIFM1 (AIF, PDCD8). They share 22% aminoacid identity. It belongs to the FAD-dependent oxidoreductase family.

Implicated in

Apoptosis and Cancer

Note
AIFM2 expression was found to be activated by overexpression of p53, which leads to cell cycle arrest.
or apoptosis. Inactivation of p53 was observed in many human cancers.

References

This article should be referenced as such: