PIK3CA (phosphoinositide-3-kinase, catalytic, alpha polypeptide)

Montserrat Sanchez-Cespedes

Programa d'Epigenetica i Biologia del Cancer-PEBC, Institut d'Investigacions Biomèdiques Bellvitge (IDIBELL), Hospital Durant i Reynals, Avinguda Gran Via de l'Hospitalet, 199-203 08907-L'Hospitalet de Llobregat-Barcelona, Spain (MSC)

Published in Atlas Database: April 2009
DOI: 10.4267/2042/44713

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 2.0 France Licence. © 2010 Atlas of Genetics and Cytogenetics in Oncology and Haematology

Identity

Other names: EC 2.7.1.153; MGC142161; MGC14216
PI3K; p110-alpha
HGNC (Hugo): PIK3CA
Location: 3q26.32
Local order: centromere-KCNMB2-ZMAT3-BC032034-PIK3CA-KCNMB3-ZNF639-MFN1-GNB4-telomere

DNA/RNA

Relative size of the 21 exons of PIK3CA. The entire exon 1 is UTR (untranslated region). Exon numeration corresponds to the prevalent transcript (NM-006218).

Description

The PIK3CA gene spans a total genomic size of 86,190 bases and is composed of 21 exons, 20 of them coding exons of varying lengths. Putative pseudogenes of PIK3CA have been described on chromosomes 16 (gi 5931525), the later one in the Cat Eye Syndrome region. These regions are highly homolog to the sequences of exons 9 and 11-13 of the PIK3CA gene.

Transcription

The human PIK3CA transcript has an open reading frame of 3,207-bp, predicting a protein of 1,068 amino acid residues.

Protein

Description

The PIK3CA gene encodes the p110alpha protein which is a catalytic subunit of the class I PI3 kinases (PI3K). Class I PI3K are heterodimeric molecules composed of a catalytic subunit, a p110, and a regulatory subunit. There are three possible catalytic subunits p110alpha, beta or delta.

Expression

Widely expressed.

Localisation

The p110alpha localizes in the cytoplasm.

Adaptor binding domain RBD, ras binding domain C2 domain Helical domain Catalytic domain

p110alpha conserved domains. Through its adaptor binding domain p110alpha interacts with the regulatory subunit. C2 domain, protein-kinase-C-homology-2 domain.
Function

Class I PI 3-kinases (PI3K) are linked to many cellular functions, including cell growth, proliferation, differentiation, motility, survival and intra-cellular trafficking. PI3K convert PI(4,5)P2 to PI(3,4,5)P3 on the inner leaflet of the plasma membrane. The PI(3,4,5)P3 provokes the recruitment to cellular membranes of a variety of signalling proteins, containing PX domain, pleckstrin homology domains (PH domains), FYVE domains and other phosphoinositide-binding domains. One of these is the protein kinase B (PKB/AKT) a very well known protein that is activated as a result of its translocation to the cell membrane where it is then phosphorylated and activated by another kinase, called phosphoinositide dependent kinase 1 (PDK1). The phosphorylation of AKT leads to the activation of the TSC/mTOR pathway. PTEN, a tumor suppressor inactivated in many cancers counteracts the action of PI3K by dephosphoryla-ting the phosphoinositide-3,4,5-trisphosphate (PIP3) (Lee et al., 2007). The PI3K are inhibited by the drugs wortmannin and LY294002 although to various degree of sensitivity among the different classes.

Mutations

Somatic

Somatic mutations at the PIK3CA gene have been found in tumors and thus, it can be considered a bona fide oncogene (Samuels et al., 2004). Most of the mutations cluster in hotspots within the helical or the catalytic domains.

Implicated in

A wide variety of human cancers

Note

(For example, colon, breast, endometrial, ovarian, brain, lung, thyroid, head and neck and stomach). PIK3CA mutations lead to constitutive activation of p110alpha enzymatic activity, stimulate AKT signaling, and allow growth factor-independent growth (Bader et al., 2005). In addition, when expressed in normal cells, these mutations allow anchorage-independent growth, further attesting to their important role in cancer development (Kang et al., 2005). PIK3CA somatic mutations are frequent in a variety of human primary tumors and cancer cell lines such as, among others, those of the colon, breast, and stomach (Samuels et al., 2004). However, in other tumors, i.e. those of the lung, head and neck, brain, endometrium, ovary, prostate, osteosarcoma and pancreas, hematopoietic malignancies, PIK3CA mutations are not as common (Angulo et al., 2008; Qiu et al., 2006; Muller et al., 2007; Samuels et al., 2004; Schonleben et al., 2006). PIK3CA gene amplifica-

References

To be noted

Note

Recent evidence has shown that the PIK3CA gene is mutated and amplified in a range of human cancers. Due to that p110alpha is believed to be a promising drug target. A number of pharmaceutical companies are currently designing and charactering potential p110alpha isofrom specific inhibitors.

Müller CI, Miller CW, Hofmann WK, Gross ME, Walsh CS, Kawamata N, Luong QT, Koeffler HP. Rare mutations of the PIK3CA gene in malignancies of the hematopoietic system as well as endometrium, ovary, prostate and osteosarcomas, and discovery of a PIK3CA pseudogene. Leuk Res. 2007 Jan;31(1):27-32

Garcia-Echeverria C, Sellers WR. Drug discovery approaches targeting the PI3K/Akt pathway in cancer. Oncogene. 2008 Sep 18;27(41):5511-26

This article should be referenced as such: