GPER (G protein-coupled estrogen receptor 1)

Eric R Prossnitz

Cancer Research and Treatment Center, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA (ERP)

Published in Atlas Database: March 2009
Online updated version: http://AtlasGeneticsOncology.org/Genes/GPERID44344ch7p22.html
DOI: 10.4267/2042/44680
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 2.0 France Licence.
© 2010 Atlas of Genetics and Cytogenetics in Oncology and Haematology

Identity

Other names: GPR30; CEPR; CMKRL2; DRY12; FEG-1; GPCR-Br; LERGU; LERGU2; LyGPR; mER
HGNC (Hugo): GPER
Location: 7p22.3

DNA/RNA

Note
GPR30 is an estrogen-responsive GPCR (7-transmembrane G protein-coupled receptor).

Description
The open reading frame of GPR30 is encoded by a single exon (1125 bp) located at chromosome 7p22.3.

Transcription
GPR30 mRNA is about 3.0 kb in human with an 1125 bp open reading frame.

Protein

Description
The gene encodes a 7-transmembrane G protein-coupled receptor (GPCR) of 375 amino acids.

Expression
GPR30 is widely express throughout the body.

Localisation
Predominantly in the Endoplasmic Reticulum.

Function
Rapid and transcriptional responses to estrogen.
GPR30 is a 7-transmembrane G protein-coupled receptor (GPCR) that has been shown to be an estrogen responsive receptor, expressed predominantly in the endoplasmic reticulum. Signaling occurs via heterotrimeric G protein activation resulting in matrix-metalloproteinase activation, release of heparin-binding EGF and transactivation of EGFR with subsequent MAPK and Akt activation. Calcium mobilization has also been reported in multiple cell types including neurons. This protein plays a role in the rapid non-genomic signaling events often seen following stimulation with estrogen. Transcriptional activation has also been reported secondary to kinase activation. Actions of GPR30 can occur in parallel to those mediated by ERα and ERβ in cells where multiple receptor are expressed, or in the absence of ERα and ERβ. Note that GPR30 does not appear to mediate transcription via classical estrogen-response elements.

Diagram from Entrez Gene.
Alternate transcriptional splice variants (involving the 5' UTR region of the gene) have been characterized.

Diagram from Entrez Gene.

Cellular activation by GPR30 and classical estrogen receptors (ERs). Receptor agonists and antagonists (indicated by upward and downward arrows, respectively) are shown for the indicated receptor (Tam, tamoxifen; G-1, GPR30-selective agonist; G15, GPR30-selective antagonist). Nuclear estrogen receptors classically mediate gene regulation although they can also mediate rapid signaling through kinases (not shown). GPR30 is found predominantly in the endoplasmic reticulum and mediates cell activation at least in part through the transactivation of EGFR leading to the stimulation of MAPK, PI3K and other rapid cellular processes, which can result in transcriptional activation.

Homology
High homology between species. Low homology to other GPCRs.

Mutations
Note
None

Implicated in

Cancer
Prognosis
Expression levels correlated with HER-2/neu, tumor size and the presence of metastatic disease in breast cancer. Expression correlated with survival and
high-risk disease in endometrial cancer. GPR30 mediates estrogen-dependent responses in breast, endometrial and ovarian cancer cell lines including proliferation and migration.

Other Note
GPR30 has been implicated to play a role in estrogen-induced thymic atrophy, estrogen-media-ted amelioration of autoimmune encephalomyelitis, depression, pain, vascular function and oocyte maturation.

References

This article should be referenced as such: