CREBBP (CREB binding protein)

Cristina Gervasini

Division of Medical Genetics, San Paolo School of Medicine, University of Milan, 20142 Milan, Italy (CG)

Published in Atlas Database: March 2009

Online updated version: http://AtlasGeneticsOncology.org/Genes/CBPID42.html

DOI: 10.4267/2042/44677

This article is an update of:

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 2.0 France Licence.
© 2010 Atlas of Genetics and Cytogenetics in Oncology and Haematology

Identity

Other names: CBP (cAMP Response Element-Binding Protein (CREB)-binding protein); RSTS (Rubinstein-Taybi syndrome); KAT3A

HGNC (Hugo): CREBBP

Location: 16p13.3

Local order: centromere-ADCY9-CREBBP-TRAP1-telomere.

DNA/RNA

Description

The gene spans about 155 kb; transcription from centromere to telomere, number of exons: 31.

Transcription

10 kb mRNA, with a 7.3 kb coding sequence, start codon in exon 1, stop codon in exon 31.

Protein

Description

2442 amino acids; 265351 Da; predict PI=8.83; Known domains are: KIX= CREB binding, Bromo= Bromodomain, Zn=zinc-finger (corresponding to cysteine-histidine rich regions), HAT= acetyl transferasic, Q= poly Glutaminic stretch. From the carboxy to the N-terminus: Q-Zn-HAT-Zn-Bromo-KIX-Zn. Reported isoform b (2402 aa) lacking aa406-444 (exon 5). Methylation of the KIX domain by CARM1 blocks association with CREB. Phosphorylated upon DNA damage, probably by ATM or ATR.

Expression

Wide expression; expression in the whole embryo as well brain; cDNA sources: mammary gland; lung; placenta; testis; lymph node; thymus; mouth; ear; kidney; embryonic tissue; larynx; pancreas; intestine; blood; heart; amniotic fluid; trachea; liver; thyroid; skin; connective tissue; uterus; eye; prostate; stomach; ovary; salivary gland; muscle; adrenal gland; bone marrow; adipose tissue; spleen; nerve; bone; bladder.
Localisation
Nucleus.

Function
Binds specifically to phosphorylate CREB and enhances its transcriptional activity toward cAMP-responsive genes; Acts as transcription co-activator by: i) enabling the interaction between different TF and RNAPoII complexes, ii) serving as molecular scaffold that brings enzymes to the promoter, iii) remodelling the chromatin favouring the open status, by histone and non-histone proteins acetylation. Essential role in embryogenesis, cell differentiation, apoptosis, and proliferation; Involved in the regulation of cell cycle during G1/S transition.

Homology
EP300

Implicated in

t(8;16)(p11;p13)/M4 ANLL -> MOZ/CBP

Disease
Acute non lymphocytic leukemia (ANLL) and treatment related ANLL (t-ANLL).

Prognosis
Poor: remission is obtained in half cases; survival is often less than 1yr.

Cytogenetics
+8 as an additional anomalies in half cases.

Hybrid/Mutated gene
5’ MOZ - 3’ CBP.

Abnormal protein
N-term finger motifs and acetyl transferase from MOZ fused to most of CBP, with a breakpoint in 5’ of the CREB binding domain of CBP.
t(10;16)(q22;p13)/M4 ANLL → MYST4/CBP

Disease
Acute myeloid leukaemia (AML) M4/M5a and therapy-related myelodysplastic syndromes (MDS). Only 4 cases described.

Prognosis
Poor, bad response to chemotherapy.

Hybrid/Mutated gene
5’ MYST4 - 3’ CBP.

Abnormal protein
In-frame fusion between MYST4 exon 17 and CREBBP exon 3. Variants fusing MYST4 exon 16 and CREBBP exon 5; MYST4 exon 17 and CREBBP exon 7 have been also described. CREBBP-MYST4 transcripts have been detected.

t(11;16)(q23;p13)/t-ANLL → MLL/CBP

Disease
Therapy related ANLL (t-ANLL); should be very close to the t(11;22)(q23;q13).

Prognosis
Likely to be poor.

Hybrid/Mutated gene
5’ MLL - 3’CBP.

Abnormal protein
N-term AT hook and DNA methyltransferase from MLL fused to most of CBP; variable brakpoint in CBP: either 5’ to the CREB binding domain (like in the t(8;16)), or just upstream the bromodomain.

Rubinstein-Taybi syndrome

Note
Due to CBP haploinsufficiency.

Disease
Rare autosomal dominant congenital disorder characterized by postnatal growth retardation and psychomotor developmental delay, skeletal anomalies (broad and duplicated distal phalanges of thumbs and halluces are a landmark sign) and specific facial dysmorphisms. The latter include down-slanted palpebral fissures, broad nasal bridge, beaked nose and micrognathia. In addition, patients with RSTS have an increased, although not well documented, risk of tumor formation.

Breakpoints

Localization of breakpoints affecting CREBBP and partner genes in leukaemia-associated balanced translocations.

References

Eckner R. p300 and CBP as transcriptional regulators and targets of oncogenic events. Biol Chem. 1996 Nov;377(11):685-8

Goldman PS, Tran VK, Goodman RH. The multifunctional role of the co-activator CBP in transcriptional regulation. Recent Prog Horm Res. 1997;52:103-19; discussion 119-20

Sobulo OM, Borrow J, Tomek R, Reshmi S, Harden A, Schlegelberger B, Housman D, Doggett NA, Rowley JD,

Li J, Sutter C, Parker DS, Blauwkamp T, Fang M, Cadigan KM. CBP/p300 are bimodal regulators of Wnt signaling. EMBO J. 2007 May 2;26(9):2284-94

This article should be referenced as such: